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Galaxy-scale Challenges for ACDM

ACDM extremely successful on large scales
Challenges on smaller scales

s  Missing satellites’ — theoretical predictions of many more low-
mass dark haloes than visible satellite dwarf galaxies around the Milky

Way (Moore et al 1999; Klypin et al 1999)

m T00 Big to Fail' — predictions of massive dark sub-haloes of Milky
Way mass dark haloes that should form stars but are not visible

(Boylan-Kolchin et al 2011, 2012)

m Core vs Cusp’ — predictions of rising density profile to central
regions of dark haloes whereas cores are favoured (e.g. Gilmore,

Wilkinson, RW et al 2007; Walker & Penarrubia 2011; Oh et al 2015)

» Bulgeless disk galaxies and old thick disks - predictions of
active merger histories lead to massive bulges and young thick disks

(e.g. Toth & Ostriker 1992; Wyse 2001)



Baryonic Physics or Dark Matter Pnysics?

Much ongoing effort to craft baryonic solutions

= Star formation efficiency, feedback

= Constrained by stellar populations e.g. bursty star-
formation to erase cusps (e.g. Onorbe et al 2015)

Challenges point to too much small-scale power

= Modify dark matter power spectrum to suppress
small scale power

= Need to be careful not to erase too much power and
delay galaxy formation too much e.g. very old stars
In dwarf satellites, observed high-redshift galaxies,
limits from reionization redshift and optical depth



Small Scales Reveal Nature of Dark Matter
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Fuzzy Dark Matter

Low enough mass particle that quantum physics wave-nature
IS manifest on scales of astrophysical interest: A = h/(mv)

Virial Theorem for dark matter halo : v2 ~ GM/R, get
minimum radius R, ~ A ~ 1kpc (10°My/M)(10-??eV/m)?
Scaling M ~1/R plus critical density for collapse =» minimum
mass increases with redshift, suppress small scales earlier

Redshift-dependent effective sound speed = Jeans length,
ZJ ~ (1+2)¥4, growth suppressed on smaller scales

Matches CDM on larger scales

Ultra-low-mass axion m ~ 10-2%eV is fuzzy DM that can create
cores in dwarf galaxies =» what about other constraints?

Hu, Barkana & Gruzinov 00; Ostriker 15; Marsh & Silk 15; Marsh & Pop 15




Halo mass function as a function of redshift, 50% dark matter
In ultra-low-mass axions, m=10-%%eV, 50% CDM: Suppression
of small-scale structure compared to 100% CDM
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High Redshift UV Luminosity Function

Abundance matching to go from halo mass function to

UV luminosity
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Relonization Constraints: Optical Depth to
Thomson Scattering

Estimate ionizing photon flux from UV luminosity function
following e.g. Kuehlen & Faucher-Giguere 2012
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Conclusions

Ultra-low-mass axions of mass ~ 1022 eV consistent
with high-redshift galaxy luminosity function — need
to push fainter!

Also consistent with Thomson optical depth

Reionization completed more rapidly than WIMP CDM
— Az ~ 2 compared to Az ~ 2.7, for very similar
median redshift ~ 9.5 — may be testable with e.qg.
AdvACT

Same mass of axion DM produces cores In dwarf
galaxies, as observed (Schive et al 14, Marsh & Pop 15)

Large-scale successes of WIMP CDM retained,
answers (these) small-scale challenges



What about the Lyman Alpha Forest?

Proposed suppression of small-scales by (thermal) Warm
Dark Matter constrained by Lyman-alpha forest data to
masses > 3.3 keV (Viel et al 2013)

Matching scale at 1 _ N
which suppression is .
50% would imply axion =os|- _
mass of > 10-29-5 eV =
‘ O
But Fuzzy Axion Dark  &06~_ | \ n
Matter has different = | - -mome N A
(steeper) small-scale 2 %[ = -m-zer Ay Ly T
cut-off than WDM | T AR
0.2 " P \ \ —
ma=1,0><10 eV
m . =1.0keV \ \ S \
| | \ y ~ A ~ |
] 0 | | ] L1 1 1 Jul | 2 N[ wad | ™
Bozek, Marsh, RW in prep 1 10 70

k[h/Mpc]



Lyman-alpha: linear power matching

= Ratio of power on
given scale for axion
DM relative to thermal
WDM that meets Ly a
constraints

= Ratio greater than
unity on scales of
Interest implies that
axion DM also meets
constraints
= 1.5x10-%teV

= 5x10%%eV axion
matches WDM of 2keV

= Next step: non-linear
evolution
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= 5x10-22eV axion matches WDM of 2.25keV
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