#### Formation of Massive Pop III Galaxies through Photoionization Feedback: A Possible Explanation for CR7

Eli Visbal (Columbia Prize Postdoc Fellow) Collaborators: Zoltan Haiman (Columbia), Greg Bryan (Columbia)

# **CR7 (Sobral et al. 2015)**

- Brightest Lyman-alpha emitter at z=6.6
- Strong Lyman-alpha and Hell 1640 Å line emission
- No metal lines
- Three clumps (A, B, C) separated by ~5 kpc (projected)
- SED consistent with:
  - B and C: ~10<sup>10</sup> M<sub>☉</sub>
    older metal enriched
    stars
  - A:  $\sim 10^7 \,\text{M}_{\odot}$  young Pop III stars



# **Too High Mass for Pop III?**

- ~10<sup>7</sup> M<sub>o</sub> much larger than expected for Pop III star clusters
- Progenitor halos should have led to Pop II transition
- Even if LW radiation prevents star formation in minihalos, atomic cooling should occur in ~10<sup>8</sup> M<sub>o</sub> dark matter halos at z~7 (only ~1.5x10<sup>7</sup> M<sub>o</sub> in gas)
- DCBH has been suggested (Pallottini et al. 2015, Agarwal et al. 2015, Hartwig et al. 2015, Smith et al. 2016, Smidt et al. 2016)

## Massive Pop III Galaxies through Photoionization Feedback

- Near large galaxy star formation suppressed
  - LW radiation prevents star formation in minihalos
  - Gas photoevaporated
- Once halo reaches Jeans mass (~10<sup>9</sup> M<sub>☉</sub> at z=6.6), pristine gas collapses to form massive Pop III starburst
- We estimate the abundance of these large Pop III galaxies
- See also Johnson (2010)



# Halo BC

- Treat B+C as one halo
- Assume 3.3x10<sup>11</sup> M<sub>☉</sub> at z=6.6
- Merger trees (Parkinson et al. 2008)
- Stars above  $T_{vir} = 10^4 K$
- Assume 4000 ionizing and LW photons per baryon in stars
- Compute ionizing flux and size of ionized bubble



# Halo A

- Assume 10<sup>9</sup> M<sub>☉</sub> at z=6.6
- Follow MMP from merger trees
- Require MMP gas to be photoevaporated before star formation
- Photoevaporation fits from Iliev et al. (2005)
- If no star formation occurs before z=6.6 may result in massive Pop III starburst



## Halo A

Fraction of realizations with complete suppression of star formation:



#### Abundance

$$n_{\rm PopIII} = n_{\rm BC} \frac{dN_{\rm A}}{dt} t_{\rm duty} f_{\rm A}$$

- Number density  $\sim 10^{-6}$  Mpc<sup>-3</sup> at z=6.6
- Consistent with density of brightest Lyman-alpha emitters
- Highly uncertain

### Conclusions

- CR7 has Hell line consistent with ~10<sup>7</sup>M<sub>o</sub> Pop III stars
- Radiation from halo BC can suppress all star formation in halo A
- Could lead to massive Pop III starburst when halo A reaches Jeans mass
- Predicted number density consistent with CR7 observations
- External metal enrichment may lower abundance estimate
- For more details see astro-ph:1602.04843