The Dynamical Lives of High Redshift Galaxies

Greg Poole

... and the rest of the DRAGONS team ... Stuart Wyithe, Simon Mutch, Paul Geil (Melbourne) Alan Duffy (Swinburne), Andrei Mesinger (SNS, Pisa) Paul Angel, Yuxiang Quin, Chuanwu Liu (Melbourne)

Dark Ages Reionization and Galaxy Formation Observables from Simulations

DRAGONS

Greg Poole

... and the rest of the DRAGONS team ... Stuart Wyithe, Simon Mutch, Paul Geil (Melbourne) Alan Duffy (Swinburne), Andrei Mesinger (SNS, Pisa) Paul Angel, Yuxiang Quin, Chuanwu Liu (Melbourne)

Halo Structure: Universal Profiles

Halo Structure at Low-z: General Agreement

Prada et al,2012

Diemer et al,2015

Halo Structure at High-z: Confusion in the Literature

Halo Structure at Low-z: Depends on Dynamical State

More quiescent halos have higher concentrations

Ludiow et al,2012

Halo Structure at High-z: Confusion in the Literature

Halo Structure at High-z: Confusion in the Literature

~Suite resolving structures down to ~2×10⁶ h⁻¹M $_{\odot}$

- ~100 snapshots to z=5 (one every 11 Myrs)
- Planck-2015 cosmology
- ~Largest run: 2160³ particles in a 67.8 h⁻¹Mpc box

Simulation	$N_{ m p}$	$L \ [Mpc/h]$	$m_{\rm p}~[{ m M}_\odot/{ m h}]$	$\epsilon~[\rm kpc/h]$	η	Cosmology	Halo Finding
Tiamat	2160^3	67.8	2.64×10^{6}	0.63	$0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.010$	Planck-2015	SUBFIND
Medi Tiamat	1080^3	22.6	7.83×10 ⁵	0.42		Planck-2015	SUBFIND
Tiny Tiamat	1080^3	10.0	6.79×10 ⁴	0.19		Planck-2015	SUBFIND
Tiny Tiamat-W07	1024^3	10.0	7.11×10 ⁴	0.20		WMAP-07	SUBFIND & ROCKSTAR

Table 1. Box sizes (L), particle counts (N_p) , particle mass (m_p) , gravitational softening lengths (ϵ) and integration accuracy parameters (η) for the *Tiamat* simulations as well as the cosmology and halo finding codes used for each.

~Suite resolving structures down to ~2 $\times10^{6}$ h⁻¹M $_{\odot}$

- ~100 snapshots to z=5 (one every 11 Myrs)
- Planck-2015 cosmology
- ~Largest run: 2160³ particles in a 67.8 h⁻¹Mpc box

Simulation	$N_{ m p}$	$L \ [Mpc/h]$	$m_{\rm p}~[{\rm M}_\odot/{\rm h}]$	$\epsilon~[\rm kpc/h]$	η	Cosmology	Halo Finding
Tiamat	2160^3	67.8	2.64×10^{6}	0.63	$0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.010$	Planck-2015	SUBFIND
Medi Tiamat	1080^3	22.6	7.83×10 ⁵	0.42		Planck-2015	SUBFIND
Tiny Tiamat	1080^3	10.0	6.79×10 ⁴	0.19		Planck-2015	SUBFIND
Tiny Tiamat-W07	1024^3	10.0	7.11×10 ⁴	0.20		WMAP-07	SUBFIND & ROCKSTAR

Table 1. Box sizes (L), particle counts (N_p) , particle mass (m_p) , gravitational softening lengths (ϵ) and integration accuracy parameters (η) for the *Tiamat* simulations as well as the cosmology and halo finding codes used for each.

Standard practice: constraints on 3 metrics

Consider relaxation following 3 dynamical events:

 $\frac{1}{2}$ -mass Formation

3:1+ Mergers

We define a new set of relaxation criteria:

1/2-mass Formation

3:1+ Mergers

We define a new set of relaxation criteria:

 $\tau_{\text{relax}} > 1.5$

1/2-mass Formation

We define a new set of relaxation criteria:

Independent of mass!

τ_{relax}>1.5

1/2-mass Formation

DRAGONS I: Poole et al, submitted

Halo Structure at High-z: Tiamat Results

DRAGONS II: Angel et al, submitted

... an interesting aside ...

Large-Scale Phase Space Substructures at High-z **Configuration Space**

Velocity Space

ROCKSTAR (phase-space) **Subhalos**

Subfind (config.-space) **Subhalos**

Yellow: **Most Massive** Substructure

Cyan: 2nd Most Massive Substructure

The Dynamical Lives of High Redshift Galaxies

- Structure and dynamical evolution across galactic scales: REMARKABLY invariant at z>5
 - Evolution of relaxation metrics: independent of mass
 - NFW/Einasto concentrations: insensitive to mass
- Only ~20% of galactic halos are relaxed at z>5
- Large-scale phase-space substructures: ubiquitous

