Searching for z>6 Quasars with Subaru / Hyper Suprime-Cam Survey

Masafusa Onoue

(Sokendai / National Astronomical Observatory of Japan) on behalf of Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) collaboration

2016/03/07 The Reionization Epoch: New Insights and Future Prospects

HSC

SHELLQs

Subaru High-z Exploration of Low-Luminosity Quasars

Subaru Hyper Suprime-Cam SSP Project 47

<u>Y. Matsuoka¹ (PI)</u>

M. Akiyama², N. Asami³, S. Foucaud, T. Goto⁴, Y. Harikane⁵, H. Ikeda¹, M. Imanishi¹, K. Iwasawa⁶, N. Kashikawa¹ T. Kawaguchi⁷, S. Kikuta¹, T. Minezaki⁵, T. Morokuma⁵, T. Nagao⁸, M. Niida⁸, Y. Ono⁵, M. Onoue¹, M. Ouchi⁵, P. Price⁹, H. Sameshima¹⁰, J. D. Silverman⁵, M. A. Strauss⁹, M. Tanaka¹, J. Tang¹¹, Y. Toba⁸

¹National Astronomical Observatory of Japan, ³Japan Professional School of Education, ⁴National Tsing Hua U, ⁵U of Tokyo, ⁶U de Barcelona, ⁷Sapporo Medical U, ⁸Ehime U, ⁹Princeton U, ¹⁰Kyoto Sangyo U, ¹¹Academia Sinica Institute of Astronomy and Astrophysics

Why we care high-z (z>6) quasar ?

SMBH evolution/formation scenario

- IGM opacity during EoR
- Co-evolution with host galaxy
- Proto-cluster search

Unique probe of the early Universe !!

IGM Opacity

Redshift evolution of IGM neutral fraction during EoR
Spatially patchy reionization process suggested

Published 100 z>6 qsos

Now, we should go deeper & higher-z (z>7)

Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) Survey

Hyper Suprime-Cam (HSC)

Mounted on Subaru's prime focus
Field of view: 1.5 deg diameter

×7 Suprime-Cam !

sensitive at Iµm (y-band)

essential for z>6 science

M31 in one shot !

Hyper Suprime-Cam (g, r,

The Andromeda Galaxy (M31)

Subaru Telescope, National Astronomical Observatory of Japan Copyright © 2013, National Astronomical Observatory of Japan, All Rights Reserved

HSC survey

- Optical multi-band survey with Subaru/HSC (5years, 300nights)
 - Wide: 1400 deg², r_{lim,5σ}~26
 - Deep: 27 deg², r_{lim,5σ}~27
 - UD: 3.5 deg², r_{lim,5σ}~28
- Most powerful optical survey before LSST

2016/03/07 The Reionization Epoch: New Insights and Futu

HSC survey

Table 7: Quasar Samples								
	Wide (1400 deg^2)				Deep (27 deg^2)			
redshift	3.7 - 4.6	4.6-5.7	5.9-6.4	6.6 - 7.2	< 1	3.7 - 4.6	4.6 - 5.7	6.6 - 7.2
mag. range	r < 23.0	i < 24.0	z < 24.0	y < 23.4	i < 25.0	i < 25.0	i < 25.0	y < 25.3
number	6000	3500	280	50	2000	200	50	3

11/17

~300@z~6 & ~50@z~7 QSOs are expected to be found

 \Rightarrow We can address general SMBH evolutionary states at z>6

Multi-color Candidate Selection

Auxiliary ($P_Q^{S,C} > 0.1$)

I.Bayesian(P_Q^B)

- efficient

but less complete
Based on Mortlock+12
Surface density of quasar/star included as a prior

2.SED-fitting(Po^s)

- complete

- but less efficient
 - various SED templates
 - covering the bias in Bayesian selection

3.Two-color(Po^C)

candidates

We apply several probabilistic approaches for our z>6 quasar candidate selection

Current Status

- We have started our unprecedented high-z quasar search with the first internal data release (~80 deg², z_{lim,50}~25.5)
- Subaru & GTC have spectroscopically followed-up 19/38 Main candidates so far
 - The faint-end of z~6 QLF will be discussed when the first follow-up is completed (next paper)

Initial Result

+9 QSOs Discovered

- 5.9<z<6.9
- M₁₄₅₀ down to -22
 - ~3 mag deeper than SDSS
- Their multi-wavelength (opt/ NIR/sub-mm) follow-up observation is ready to start
 - BH mass, accretion rate, BLR metallicity, IGM neutral fraction, host galaxy properties, etc...

Success Rate Quite High

- + We have identified 15 (/19) extra-galactic objects in Main candidates
 - ~100% success rate at z_{AB} <23.5
 - All known z~6 QSOs are successfully recovered by our Main selection
 - 6 LBGs found from faint candidates

Beyond the Tip of the Iceberg

Summary

- Faint z>6 quasars contain valuable information on EoR
- HSC-SSP survey is able to reveal this unexplored realm by providing massive numbers of z>6 quasars, powered by more general SMBH population
- 9 z>6 quasars (+6 galaxies) have been discovered through the first follow-up observation. Our probabilistic candidate selection has worked quite successfully.
- Please check further details in Matsuoka et al. (2016)

Back-up Slides

Two-color diagram (i-z vs z-y)

Stellarity of new z>6 QSO/LBGs

Galaxies

QLF vs LBG LF

