Contribution of the Smallest Galaxies to Reionization: A Qualitatively Different Picture

50

Michael L Norman CASS and SDSC UC San Diego

Collaborators: Pengfei Chen, Hao Xu, John Wise, Brian O'Shea

Tale of Two Simulations

The Renaissance Simulations

Statistical properties of the first galaxies in ~200 Mpc³ survey volumes

ṅ_{ion,esc}

 $f_{sf}(M_h)$

$$10^{6} < M_{h}/M_{sol} < 10^{10}$$

 $10^{3} < M_{*}/M_{sol} < 10^{8}$
 $20 > z > 7.5$

100 Million core-hrs Enzo AMR Reionization Simulation

Fully coupled RHD cosmological simulation with dynamic sources

 $10^7 < M_h/M_{sol} < 10^{10}$ 20 > z > 5

> 0.5 Million core-hrs Enzo uniform grid

M. Norman, Aspen EoR 2016

Early reionization is dominated by episodic star formation in low mass halos, resulting in an earlier onset and abundant relic HII regions

1152³

M. Norman, Aspen EoR 2016

Theoretical Motivation

Birth of a Galaxy III, Wise et al. (2014)

- Wise et al. (2014) showed that metal-cooling halos* with $10^7 < M_h/M_{sol} < 10^{8.5}$ contribute up to ~30% of the ionizing flux during reionization due to their:
 - high space density
 - high ionizing escape fractions
 - not insignificant star formation rates
- <u>Shortcoming</u>: small sample size (32)

*low mass halos enriched by prior Pop III/Pop II SNe which cool via metal fine structure lines

M. Norman, Aspen EoR 2016

Halos with Ionizing Sources

M. Norman, Aspen EoR 2016

Renaissance Simulations AMR Radiation Hydrodynamic Cosmology Simulations on Blue Waters Sustained Petascale Supercomputer

THE ASTROPHYSICAL JOURNAL LETTERS, 807:L12 (7pp), 2015 July 1

M. Norman, Aspen EoR 2016

Renaissance Simulations Publications

Reference	Торіс
Xu et al. (2013)	Pop III stars and remnants
Xu et al. (2014)	X-ray feedback from Pop III black holes
Chen et al. (2014)	Scaling relations for SAMs
Ahn et al. (2015)	21 cm signal from X-ray preheating
O'Shea et al. (2015)	UV luminosity function
Xu et al. (2016a, submitted)	Late Pop III star formation
Xu et al. (2016b, in prep)	Galaxy properties and escape fractions
Xu et al. (2016c, in prep)	X-ray background from Pop III stars

Sample size: ~3000

All halos at final redshift

M. Norman, Aspen EoR 2016

All halos at final redshift

M. Norman, Aspen EoR 2016

Not all halos form stars, and those that do form them episodically

The UV luminosity function flattens

M. Norman, Aspen EoR 2016

Lower mass halos have higher escape fractions

FIRST GALAXY PROPERTIES AND UV ESCAPE FRACTIONS

M. Norman, Aspen EoR 2016

Xu et al. in prep.

Fully Coupled Cosmological RHD Simulation with Calibrated Sources

- 10 Mpc/h box
- 1152³ particles/cells
 - m_{dm} =6.96 x 10⁴ M_{sol}
 - HMF complete to $M_h^{\sim}10^7 M_{sol}$
- Inline halo finding to source ionizing emissivity field
 - Probabilistic model for assigning emissivity to a halo derived from *Renaissance Simulations*
- Flux limited diffusion radiation transport coupled to multispecies hydro+Nbody (Norman+2015)

z=10

Norman et al., in prep

Early reionization is dominated by episodic star formation in low mass halos, resulting in an earlier onset and abundant relic HII regions

1152³

M. Norman, Aspen EoR 2016

More than 10% of the volume is ionized above f_i=0.1 by z=10

All of the volume is ionized above $f_i=0.999$ by z=7.1

M. Norman, Aspen EoR 2016

More than 10% of the volume is ionized above f_i=0.1 by z=10

All of the volume is ionized above $f_i=0.999$ by z=7.1

M. Norman, Aspen EoR 2016

Contribution of halos btw. 10⁷ and 10⁸ M_{sol}: resolution study

M. Norman, Aspen EoR 2016

Fraction of emissivity coming from halos below 10⁹ M_{sol}

Conclusions

- Low mass halos $(10^7 < M_h/M_{sol} < 10^8)$ enriched by SNe from earlier star formation (Pop III and II) contribute significantly to *earliest phases of reionization* due to their
 - High number density
 - High ionizing escape fractions
 - Modest but non-zero star formation rates
- Bursty nature of star formation in such halos introduces a *stochastic nature* to early reionization
- Late stages of reionization are dominated by more massive halos which form stars continuously
- We have carried out a fully-coupled RHD simulation of reionization in a small volume which achieves overlap at z=7.1 and a tau(es)=0.069 with source luminosities and ionizing escape fractions measured from the *Renaissance Simulations*

Pop III metals may be more important that Pop III photons

Renaissance Simulations Fact Sheet

Configuration		Physics	
L_periodic (cMpc)	40	Cosmology	WMAP7
L_refined (cMpc)	6.6	ICs	MUSIC
N_p (effective)	4096 ³	Code	ENZO
m_p (solar mass)	2.9 x 10 ⁴	gas dynamics	9-species primord.2 metal fields
AMR levels	12		
∆x min (pc)	19/(1+z)	Chemistry/cooling	9-species noneq. metal line
z_init	99	Padiativo transfor	
		Radiative transfer	EUV, LVV
Simulations		Lyman-Werner	Yes
Runs	7	DKgu	
Core-hrs	~100 M	Pop III SF+FB	Wise+ 2012b
		Pop II SF+FB	Wise+ 2012b
Data (TB)	~70	•	

Star Formation Prescriptions Wise et al. (2012a,b; 2014)

SN FB

Mass recycling &

enrichment

Pop III	[Z/H] <= -4	Metal-enriched	[Z/H] > -4
Particle	Individual Pop III star	Particle	Molecular
Mass	IMF w/M _{char} =40 M _{sol}		cloud/star cluster
thresholds	thresholds $f >5x10^{-4} \delta >5x10^{5}$	Mass	> 1000 M _{sol}
thesholds	div(V)<0	thresholds	T<1000K, δ_{b} >5x10 ⁵
Star	Star Schaerer (2002) properties		div(V)<0
properties		SF efficiency	0.07 f _{cold} inside MC
SN yields	Heger & Woosley (2003)		radius
		Radiative FB	6000 γ/baryon over

Pop III IMF

$$f(\log M)dM = M^{-1.3} \exp\left[-\left(\frac{M_{\text{char}}}{M}\right)^{1.6}\right] dM$$

20 Myr
6.8x10 ⁴⁸ erg/s/Msol after 4 Myr
$\Delta m_{\rm ej} = \frac{0.25 \ \Delta t \ M_{\star}}{t_0 - 4 \ \rm Myr} \ y = 0.005$

FLD versus MORAY

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 216:16 (24pp), 2015 January

NORMAN ET AL.

Figure 18. Same as Figure 17 except for z = 9.

Norman et al. (2015)

FLD versus MORAY

Norman et al. (2015)