I Zw 18-NW as a Cosmological Probe of the Reionization Era

Sally Heap (Eureka Scientific; GSFC Emeritus) Jean-Claude Bouret (LAM) Ivan Hubeny (U. Arizona)

I Zw 18-NW Fast Facts

- M_{1600,AB} = -14.4; Distance ~ 18 Mpc (Aloisi+07)
- Age of NW star cluster ~ 5 Myr (Tmax~40,000 K)
- M_{BH} > 85 M_{\odot} (Kaaret & Feng 2013)
- M_{\star} ~ 5x10⁵ M_{\odot} ; M_{gas} ~1x10⁸ M_{\odot} ; M_{dyn} = 3x10⁸ M_{\odot} (Lelli + 12)
- log Z/Z $_{\odot}$ (H II region); ~ -1.7; Z(H I region)~-2, with Z=0 pockets? (Lebouteiller, SH+13)

I Zw 18 is like the (so far) unseen dwarf galaxies that reionized the universe

LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT $z \ge 5-8$ FROM THE HUDF09 WFC3/IR OBSERVATIONS*

I Zw 18-like dwarf galaxies at z~7 are too faint for detailed spectral analysis by JWST

I Zw 18 can help us understand primitive galaxies at high redshift and how reionization occurred

Very low-Z massive stars are born and evolve differently from higher-Z stars

Low-Z on the ZAMS are hotter (up to $T_{eff} \sim 63,000$ K for $M_i = 150 M_{\odot}$, log Z=-1.7)

 \therefore expect harder radiation

Low-Z stars are smaller than $\rm Z_{\odot}$ stars

 \therefore may be born rotating faster

Rotation-induced mixing is much more efficient at low Z (Maeder & Meynet 2012)

- ∴ expect N enhancement in rapidly rotating stars
- ∴ expect more stars undergoing chemically homogeneous evolution (CHE)

Stellar winds in very low-Z stars are weak to non-existent

- \therefore angular momentum is not lost to a stellar wind \rightarrow progenitors of GRB's?
- \therefore stellar mass is not significantly reduced by evolution
- \rightarrow produce massive black holes

Binary interactions are important in massive stars

~ 70% of all stars born as O stars are members of a binary system that will interact by Roche lobe overflow

~ 40% of all O stars will be affected during their main sequence lifetime, impacting subsequent evolution

~ 33% of O stars are stripped of their envelope before they explode as hydrogen-deficient CC SNe (Types Ib, Ic and IIb)

~ 20-30% of all O stars will merge with a nearby companion

(Sana+13)

... especially low-Z binaries

• GW150914 is the result of a merger of $30 + 30 M_{sun}$ black-holes

• I Zw 18 hosts a massive X-ray binary (M>85 M_{\odot}) (Kaaret +2013)

I Zw 18-NW has an embedded ultra-luminous X-ray source

Kaaret+Feng 2013

The ULX is a massive X-ray binary with an estimated BH mass, $M_{
m BH}$ >85 M_{\odot}

The MXRB is in a bright, compact source H α , He II 1640, 4686, and [O III] 5007

Kaaret & Feng 2013

Effect of BH on SED

- - SED incident at inner edge of CLOUDY model (1x10¹⁷ cm)
 ----- Transmitted SED

Effect of T_e on UV spectrum

Effect of L_x on UV spectrum

Accretion of pristine stream onto I Zw 18-NW?

Cold Accreting Streams

Dekel + 2009

This southern stream "does not seem kinematically connected with the SE region of the main body of I Zw 18, as the gas velocity changes abruptly from 790 km s⁻¹ to 720 km s⁻¹. .. At the junction between I Zw 18 and the stream, the HI line profiles are double peaked, suggesting that there are two distinct components, possibly well-separated in space but projected to the same location on the sky". (Lelli+14)

He II emission is incongruous with the metal-line spectrum

