How to achieve the escape fraction necessary for galaxies to reionize the Universe

Escape fraction of ~20% required for reionization

Finkelstein+12; see also Kuhlen & Faucher-Giguère 12, Robertson+13,15

Chris Hayward (Caltech)

"The Reionization Epoch"

The Feedback In Realistic Environments (FIRE) simulations

- Ultra-high-res (0.1-4 pc, 20-2000 M_{sun}) zooms
- SF threshold: $n = 100 \text{ cm}^{-3}$
- Multiple stellar feedback channels:
 - 1. Supernovae
 - 2. Radiation pressure
 - 3. Stellar winds
 - 4. Photoheating
- See Hopkins+14 for details

Chris Hayward (Caltech)

"The Reionization Epoch"

Kasen+15

Ma,

Bursty star formation ubiquitous in FIRE

Chris Hayward (Caltech)

"The Reionization Epoch"

SN feedback drives burstiness

Chris Hayward (Caltech)

"The Reionization Epoch"

Feedback causes gusty outflows

Chris Hayward (Caltech)

"The Reionization Epoch"

The escape fraction in FIRE

Chris Hayward (Caltech)

"The Reionization Epoch"

Sims that don't resolve ISM overpredict f_{esc}

Chris Hayward (Caltech)

"The Reionization Epoch"

Runaway stars insufficient

Chris Hayward (Caltech)

"The Reionization Epoch"

Binaries —> more ionizing photons at 'late' times

Effective escape fraction increased by 4-10x

Effective escape fraction can reach 20%

Summary

- FIRE sims (multi-channel stellar feedback, resolved ISM) exhibit ubiquitous starbursts and outflows at high z
- With single-star stellar evolution models, time-averaged escape fractions much too low (~5%)
- Runaway stars insufficient to boost escape fraction
- Sims without resolved ISM overpredict f_{esc}
- Binaries extend the lives of some massive stars and thus ionizing photon production rates at late times
- With binaries, can achieve $f_{esc} \sim 20\%$ because feedback 'punches holes' in ISM around 10-30-Myr-old stars, for which ionizing photon rate is still high when binaries are included

Chris Hayward (Caltech)

"The Reionization Epoch"

Simulation details

Name	m_b	ϵ_b	<i>m</i> _{dm}	$\epsilon_{ m dm}$	M _{vir}	M_*	M _{UV}
	(M_{\odot})	(pc)	(M_{\odot})	(pc)	(M_{\odot})	(M_{\odot})	(AB mag)
z5m09	16.8	0.14	81.9	5.6	7.6e8	3.1e5	-10.1
z5m10mr	1.1e3	1.9	5.2e3	14	1.5e10	5.0e7	-17.5
z5m11	2.1e3	4.2	1.0e4	14	5.6e10	2.0e8	-18.5

Notes. Initial conditions and galaxy properties at z = 6.

- (1) Name: Simulation designation.
- (2) m_b : Initial baryonic particle mass.
- (3) ϵ_b : Minimum baryonic force softening. Force softening is adaptive.
- (4) m_{dm} : Dark matter particle mass in the high-resolution regions.
- (5) ϵ_{dm} : Minimum dark matter force softening.
- (6) $M_{\rm vir}$: Halo mass of the primary galaxy at z = 6.
- (7) M_* : Stellar mass of the primary galaxy at z = 6.
- (8) M_{UV}: Galaxy UV magnitude (absolute AB magnitude at 1500 Å).

Chris Hayward (Caltech)

"The Reionization Epoch"