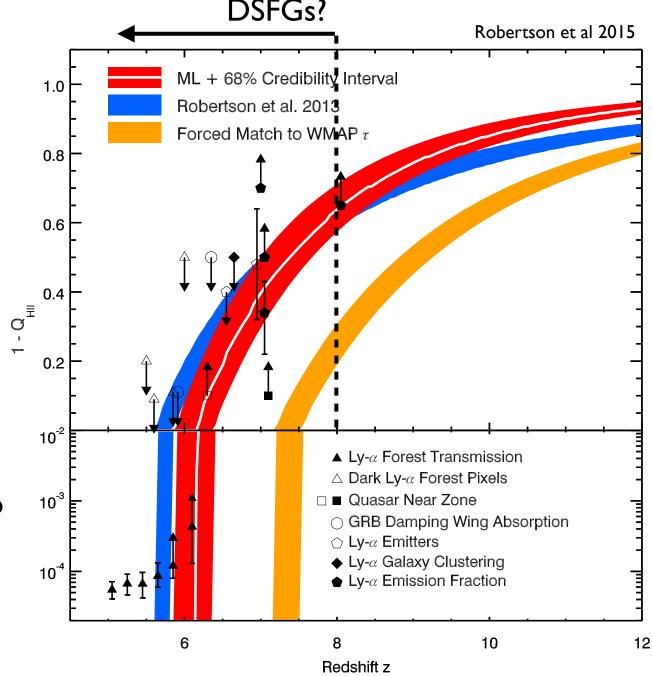
A 30m Sub/Millimeter Survey Telescope to Probe Dusty, Star-Forming Galaxies into the Epoch of Reionization

The Reionization Epoch: New Insights and Future Prospects 2016/03/08 S. Golwala (Caltech) for many others

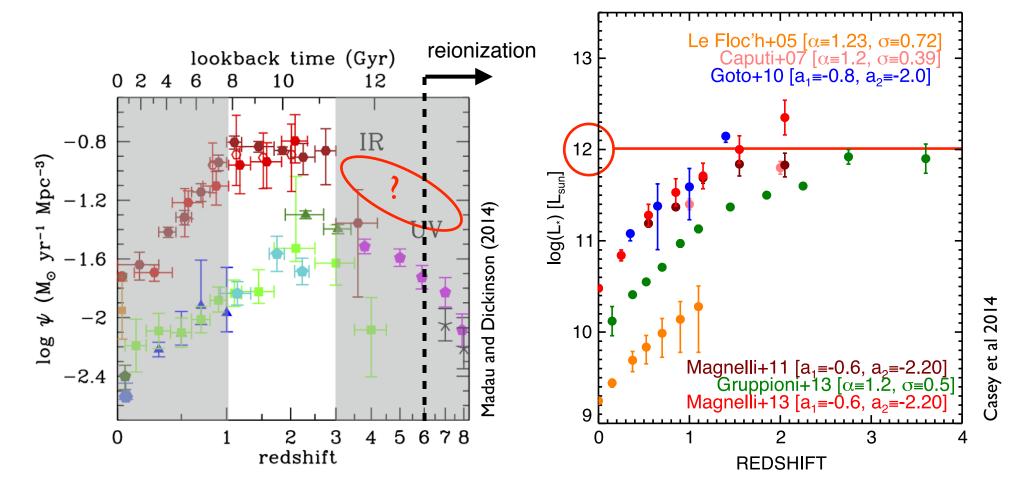

What do dusty, star-forming galaxies have to do with reionization? DSFGs?

Reionization is a critical observable for constraining galaxy evolution

Must have enough star formation to produce ionizing photons

Must not form stars so quickly that dust too quickly begins to absorb UV photons

Tracing the rise of DSFGs is necessary to piece together the puzzle of how galaxies reionized the universe


What is the history of DSFGs during and right after the epoch of reionization?

DSFGs dominate SFR density at epoch of peak SFR, z ~1-3

 $L_{*,IR} \approx 10^{12} L_{Sun}$, SFR ~ 200 M_{Sun}/yr

hyperlum. starbursts: > 2000 M_{Sun}/yr, 10¹³ L_{Sun}

How did they arise during EoR and afterward?

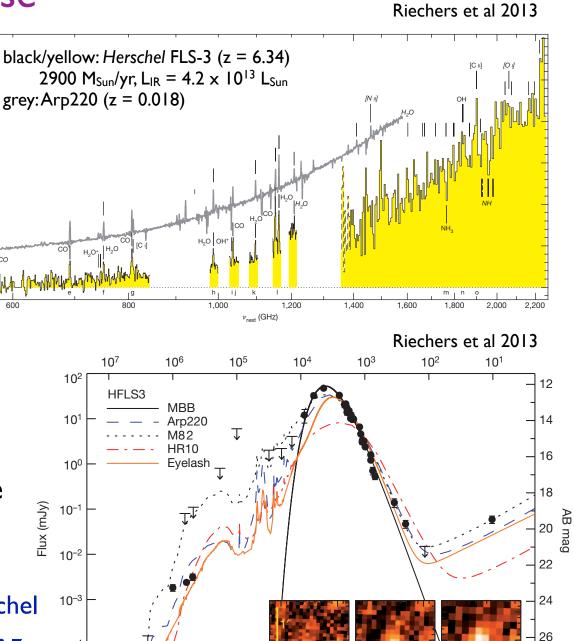
How quickly do DSFGs arise in/after EoR?

density (mJy)

Important test cases exist!

HFLS-3: Extraordinary:

 $z \sim 6.3$ SFR_{IR} ~2900 M_{Sun}/yr L_{IR} ~ 4.2 x 10¹³ L_{Sun} T_{dust} = 56K SFR_{UV} x10³ smaller! Incredible dust content at end of EoR


These objects crucial

Show the outer limits of what is possible at high z

Need to find many more to time birth of DSFGs, constrain rise of dust at z > 6

Dimmer galaxies not visible to Herschel SED peak shifts to longer λ at higher z

Also: tracers of extreme overdensities at high z A 30-m Sub/mm Survey Telescope to Probe DSFGs into the EoR

10³

 $\lambda_{\rm obs}$ (µm)

 10^{2}

10⁴

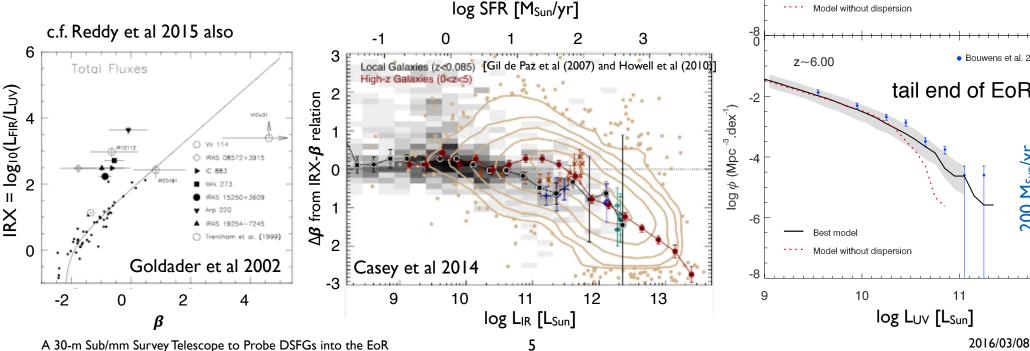
2016/03/08

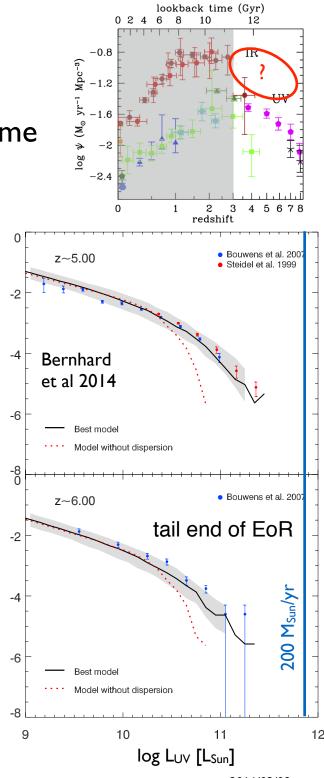
10⁵

28

10⁶

10-4


10⁻⁵ ______


 10^{0}

10¹

How do DSFGs connect to the galaxies that produce ionizing UV photons?

- Standard IRX- β relation implies less dust in rest-frame UV galaxies at z > 3.5
- Known deviations from IRX- β relation at high L_{IR}: UV and IR sightlines become mismatched
- Maybe they are the same galaxies, with scatter in IRX from stochastic fluctuations in dust content into EoR (Bernhard et al 2014)?
- Are they just different populations?

 $\log \phi \text{ (Mpc}^{-3}.\text{dex}^{-1})$

These studies require maps of 1000s of deg² to 10¹² L_{Sun}

Various models (empirical, sim-based) indicate expected counts at z > 3.5

Driven by # of objects needed for UV-IR connection and detection of hyperluminous galaxies (extreme overdensities)

Cannot do this with ALMA: at same depth, ~0.1 deg² in 1000 hrs

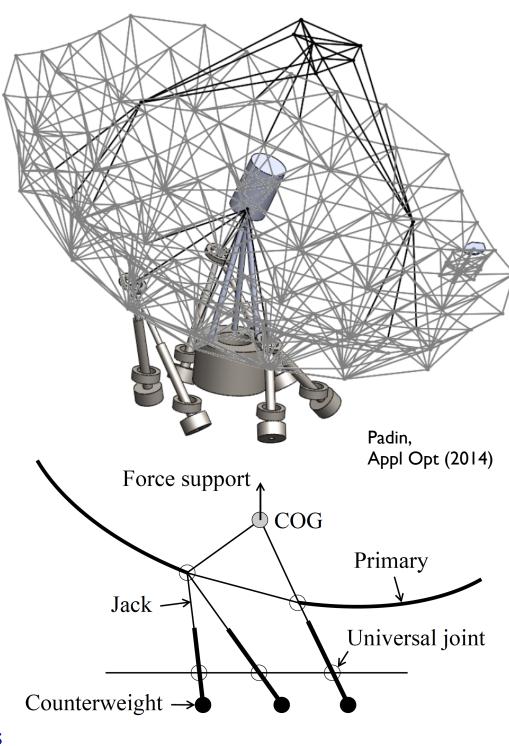
		z ~ 4	z ~ 6	z ~ 7
sky density [†] > 10 ¹² L _{Sun}		1000/deg ²	50/deg ²	5/deg ²
science	# req'd	area req'd		
luminosity function	1 O ³	l deg ²	20 deg ²	200 deg ²
UV-IR connection	I 0 ⁴	10 deg ²	200 deg ²	2000 deg ²
clustering	5 x 10 ³	5 deg ²	100 deg ²	N/A
clustering in M_* or SFR bins	5 x 10 ⁴	50 deg ²	1000 deg ²	(too sparse
clustering in (M_* , SFR) bins	5 x 10 ⁵	500 deg ²	10 ⁴ deg ²	on sky)
hyperluminous (200x rarer)	50	10 deg ²	200 deg ²	2000 deg ²

[†]based on Bernhard et al 2014 model, which fits IR, UV data, predicts hyperluminous DSFGs

Chajnantor Sub/millimeter Survey Telescope

Low-cost, 30m, 850 μ m 1° FoV

- Light, "minimal" mount
 - Primary floats on single-point support at center-of-gravity
 - Hexapod operates in balanced,
 - "weightless" mode
 - (except for wind & seismic):
 - hexapod is repeatable
 - I rad range-of-motion: 20,000 deg² at equa
 - I° diffraction-limited FoV at 850 μm at single forward instrument mount


Cheap materials, sophisticated design and controls

Machined AI panels on steel truss

Simple mechanisms: No cable wraps

Light, exposed structure

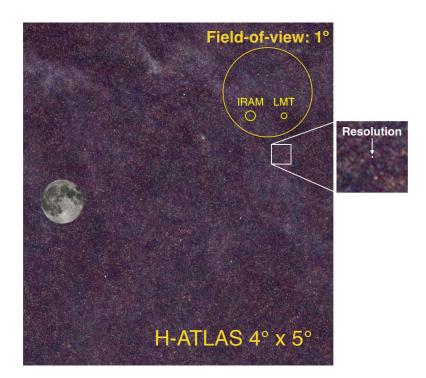
Active surface and offset guiding corrects wind and thermal deformations

Instrumentation Plan

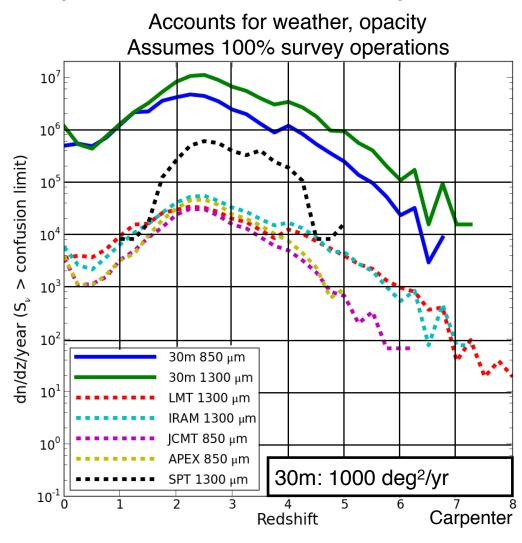
First light: Simultaneous imager in 3-6 bands + 10-object MOS Provides the desired imaging survey; ~50,000 detectors Spectrometer to be built with existing technology e.g., Z-Spec-style grating spectrometer Only ~10,000 detectors in spectrometer At 10¹² L_{Sun} limit: 10⁶ imaging detections per year at z > 4 3000 SNR = 5 [CII] detections/yr

2nd generation instrument: 100-object MOS

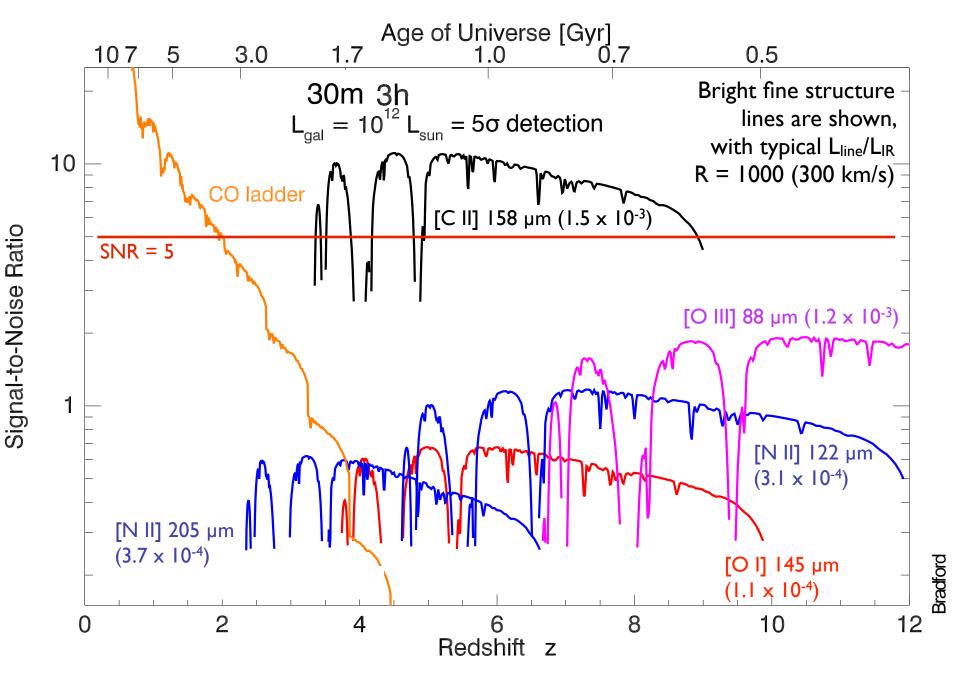
Requires more compact spectrometer technology e.g, SuperSpec technology under development few x 104 [CII]/yr!


3rd generation: IFU with 100s to 1000s of beams

hundreds of thousands of [CII] detections/yr at $10^{12} L_{Sun}$ tomographic mapping down to $10^{11} L_{Sun}$


CSST provides required survey speed for DSFG clustering measurements into EoR

CSST maps 1000 deg²/yr to 10^{12} L_{\odot} 1000 hrs/yr with 1° FoV and excellent site: meets requirement for clustering measurements.


~100x higher for 30m than existing, comparable resolution telescopes

Various models (empirical, sim-based) give consistent expectations for counts in z > 3.5 unexplored territory.

First-Light Spectroscopic Capabilities

Comparison to ALMA

For a single object, ALMA ~10x more sensitive than 30m

Both ALMA receivers and 30m spectrometers are photon background limited

ALMA more sensitive due to enormous collecting area (10x)

10-object MOS matches ALMA for dust-obscured source z-search

Those without O/IR counterpart and thus no photo-z

For z-search, ALMA requires 8 tunings = x8 in time; 30m requires no such tunings.

10-12 beams makes up another factor of 10 in time

10-object MOS effective in identifying objects for critical ALMA followup

1000 hrs/yr with 30m MOS (50% of available time) equivalent to 100 hrs/yr of ALMA for sources with known z: 3000 [CII] SNR = 5 detections at $10^{12} L_{Sun}$

use 30m [C II] to, e.g.:

define samples with range of SF spatial extents

find objects with anomalously low $L_{[C II]}/L_{FIR}$ (small spatial extent)

find objects with strong CH⁺

use ALMA followup to

study [O I], [N II], [O III] to check [C II] calibration, measure effective stellar T in individual objects study other tracers to measure morphology and kinematics of ionized and neutral gas measure neutral outflows precisely using wings of [C II] (and CO)

Complementarity with other facilities

LSST/Euclid/VISTA/WFIRST

Counterpart id to obtain photo-z

 M_* , compl. SFR indicators (UV, $H\alpha$)

Commensurate area

TMT, JWST

UV/O/IR spectroscopic followup: HII region diagnostics

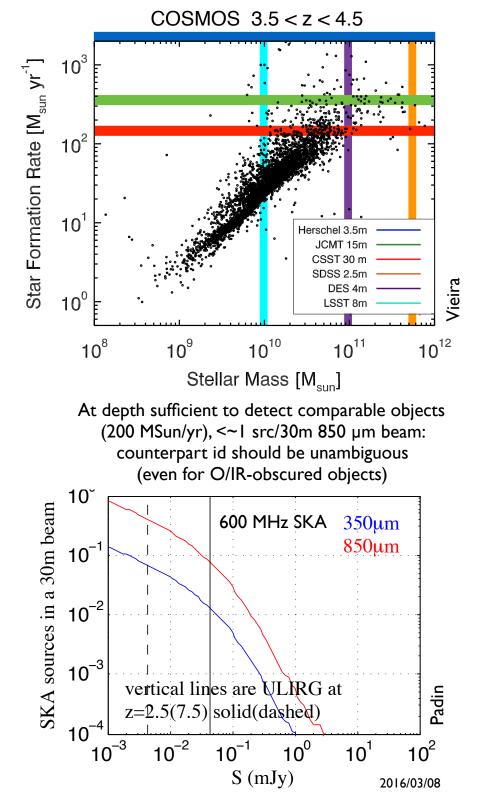
Morphology, comparison of UV to FIR

JVLA, SKA

Counterpart id

Radio SFR indicators (synchrotron, free-free)

ALMA


Lower-level fine-structure lines

Morphology and kinematics

Complementary area/depth surveys

FIR Surveyor

Ideal for studying z < 3.5 population Use dropouts to id z > 3.5 sources

A 30-m Sub/mm Survey Telescope to Probe DSFGs into the EoR

Science Capabilities of CSST

Trace the evolution of dusty, star-forming galaxies (DSFGs) from z > 3.5 to z \approx 1-3 when they dominate cosmic SFR by imaging 1000s of \Box° in multiple bands near 1 mm

~ten DSFGs known at z > 3.5; largely unexplored territory. We'll find >10⁶ DSFGs/yr at z > 3.5!

Connection between dusty galaxies at z > 3.5 and rest-frame UV population: same or different?

Use DSFGs to identify extreme overdensities at high z

w/O/IR photo-z's, use clustering to tie DSFGs to DM halos to track time evolution along main sequence

Measure molecular gas masses for z < 3.5 galaxies to provide gas mass, fraction, connection to SFR

Detail the drivers and impacts of star formation using spectroscopy of 1000s of galaxies the spatial extent of star formation

the physical conditions in the ionized and photodissociation regions around young stars

the characteristics of outflows and infall that are part of feedback loop that regulates SFR

Elucidate star formation locally by imaging nearby galaxies and large parts of our own

Map the fragmentation structure of molecular clouds and its connection to IMF

Study episodic accretion onto protostellar cores

Determine how rate and efficiency of star formation depend on M_{*}, environment, and galaxy morphology

Deepen our understanding of galaxy clusters and use them as cosmological tools via SZ measure P, T, and v in the ICM to constrain the role of mergers, accretion, and energy injection measure the cosmological peculiar velocity field to constrain cosmo params and deviations from GR Find the unexpected!

A 30-m Sub/mm Survey Telescope to Probe DSFGs into the EoR