Mark Dijkstra

UiO Institute of Theoretical Astrophysics

University of Oslo

with: Shiv Sethi (RRI), Abraham Loeb (CfA), Max Gronke (UiO) & David Sobral (Lancaster)

> arXiv:**1601.04712** (ApJ accepted), Dijkstra, Sethi & Loeb arXiv:**1602.07695** (resubmitted to ApJ), Dijkstra, Gronke & Sobral

The Direct Collapse Black Hole Scenario

`....as long as H₂ formation is suppressed, these massive clumps do not fragment but rather cool and continue to collapse isothermally at a temperature of ~10⁴ K.... ' from Bromm & Loeb 2003

The Direct Collapse Black Hole Scenario

Extremely interesting from a [Lya] radiative transfer (RT) point of view:

- **1.** Pristine environment
- **2.** Suppressed fragmentation
- **3.** Suppressed H₂ content.
- 4. No star formation & stellar feedback, dust.

Ordinary challenges one faces when modelling interstellar Lya RT are absent.

Lya `survival probability' is maximised.

Observational Signature of DCBHs I: Lya

Study Lya RT through simplified models of DCBH formation.

Observational Signature of DCBHs I: Lya

Study Lya RT through simplified models of DCBH formation.

Observational Signature of DCBHs I: Lya

Study Lya RT through simplified models of DCBH formation.

Results I: Lya Luminosity

Lya luminosity as function of mean cloud density for cloud photoionized by central ionising source (powered by in place DCBH of mass M_{BH})

Results I: Lya Luminosity

Lya luminosity as function of mean cloud density for cloud photoionized by central ionising source (powered by in place DCBH of mass M_{BH})

For predictions of emerging spectra, see Dijkstra, Gronke & Sobral 2016

Results II: Comparison to CR7

Cosmos Redshift 7 (CR7, Sobral et al. 2015) is first candidate for a DCBH:

- extraordinary bright in Lya (L~10⁴⁴ erg/s)
- extraordinary bright in He1640 —> hard ionising spectrum $T_{eff} > 10^5$ K (Sobral et al. 2015)
- absence of other metallic lines: Z < 0.02 Z_{sol} (Sobral et al. 2015; Hartwig et al.2015)
- blue young galaxy close to old red galaxy: prediction of DCBH scenario (Dijkstra et al. 2008, Agarwal et al. 2012)

Lya luminosity alone requires that if CR7 harbours a BH, then $M_{BH} > 10^7 M_{sun} > M_{DCBH}$

Aspen, 2016

Results II: Comparison to CR7

Lya luminosity alone requires that if CR7 harbours a BH, then $M_{BH} > 10^7 M_{sun} > M_{DCBH}$

If CR7 hosts a DCBH, then it must have evolved since the DCBH formed. Modelling Lya from first principles reliably no longer possible. Must use sub grid prescription.

Results II: Lya Spectra

Use sub grid prescription - the `shell model' - to model Lya spectral line shape (Gronke et al. 2015, also see talk by M. Gronke for more details.)

Best-fit shell model parameters reminiscent of those inferred for z~2.2 LAEs (Hashimoto et al. 2015, z~0.3 green pea galaxies (Yang et al. 2016). *ISM of CR7 affected by stellar feedback?*

3-cm Masers: A Smoking Gun Signature of DCBH

Spin-orbit coupling introduces energy differences between 2s-2p levels (Wild 1952).

The 2p levels can be "pumped" by Ly α photons, and possibly at a level where the **2P**_{3/2} level is overpopulated w.r.t. **2s**. (Pottasch et al. 1960, Field & Partridge 1961, ...)

STIMULATED EMISSION OF THE 3.04-CM FINE-STRUCTURE LINE OF HYDROGEN IN DIFFUSE NEBULAE

The optical de and we can ge

1S

GEORGE B. FIELD AND ROBERT B. PARTRIDGE Princeton University Observatory Received June 9, 1961

The Matching Requirements of 3-cm Masers & DCBH Formation

The DCBH scenario requires isothermal collapse at
$$T \sim Ie4 K$$
 of pristine gas, free of H₂.

At T~Ie4 K the gas cools through collisional excitation of hydrogen, mostly through $Ly\alpha$ production.

At T~Ie4 K the gas is highly neutral, and we build up large column densities of hydrogen, which increases the scattering (and thus the pumping) rate.

The Matching Requirements of 3-cm Masers & DCBH Formation

The DCBH scenario requires isothermal collapse at $T \sim I = 4 \text{ K}$ of pristine gas, free of H₂.

In pristine gas - free of H₂ - usual Ly α eliminators are absent, which maximizes Ly α pumping.

Required conditions for DCBH scenario, are ideal for Lya pumping.

3-cm Masers: Geometry & Maser Cycle

The 3-cm Optical Depth through Clouds Collapsing into a BH

For negative tau DCBH the background CMB is amplified by a factor of $e^{| au_{
m FS}|}$

The `Strange' Spectral Signature of 3-cm Masers

 ν (Mhz), Observers Frame

Hyperfine splitting of 3-cm transition gives rise to three distinct lines with line strength ratios 1:5:2 (Wild 1952). Predicted line shape depends *only* on atomic physics.

Lya and 3-cm Maser Signatures from Direct Collapse Black Holes

- Conditions that allow DCBH formation ideal for Lya RT modelling
- DCBH of mass $M_{\rm BH}$ illuminating surrounding gas can give rise to a maximum Lya luminosity of $L_{\alpha} \sim 10^{43} (M_{\rm BH}/10^6 M_{\odot})$ erg/s.
- CR7's Lya luminosity requires $M_{BH} > 10^7 M_{sun} > M_{DCBH}$. BH mass *must* have grown. Galaxy *must* have evolved: consistent with Lya spectral line shape which resembles that of LAEs.
- Conditions that allow DCBH formation ideal for Lyα pumping of H fine structure levels. The resulting 3-cm maser provides a smoking gun signature of the DCBH formation scenario.
- Maser amplification saturates at ~10⁵. Predicted flux densities ~ 1 muJy. *Detectable with SKA*!
- **3**-cm masers give rise to characteristic line whose structure is set entirely by hyperfine splitting, with delta nu / nu ~ 0.03, and would be easily identifiable.