Molecular gas properties of a strongly lensed star-forming galaxy at z=3.63

Miroslava Dessauges-Zavadsky (Geneva Observatory)

Michel Zamojski Françoise Combes Wiphu Rujopakarn Harald Ebeling Johan Richard **Daniel Schaerer**

Tim Rawle Eiichi Egami

The target: MACSJ0032-arc

z=3.63 may appear as a low redshift ... but it is not ...

it is the highest redshift at which an estimate of the molecular gas mass has been obtained from CO in a main sequence (MS) star-forming galaxy (SFG)

> how is this achievable? thanks to strong gravitational lensing of the 6 CO measurements performed to date for z>2.5 MS SFGs, 5 were obtained in strongly lensed SFGs (including the z=3.63 galaxy)

MACSJ0032-arc ID

- SFG strongly lensed by the galaxy cluster MACS J0032.1+1808 Ebeling+11
- Discovered as a bright FIR emitter in the Herschel/SPIRE Lensing snapshot Survey (PI: E. Egami)
- Identified as a giant arc in the HST/ACS images extending over 42.4" and composed of 6 multiple images
- 4 multiple images detected with Spitzer/IRAC (3.6+4.5 μm)

MACSJ0032-arc ID

Physical properties derived from SED fitting of the optical, IR to FIR photometry

lensing-corrected values

L _{UV} (L⊙)	2.00E+10
L _{IR} (L⊙)	4.80E+11
Av	1.25
SFR _{IR+UV} (M⊙/yr)	53
M∗ (M⊙)	3.20E+09
sSFR (Gyr ⁻¹)	16.5

Place MACSJ0032-arc on the MS with a marginal offset of +0.02 dex (computed at the same M* and z=3.63) Daddi+07; Rodighiero+10; Schreiber+15

~90% of the total SFR_{IR+UV} seen through the thermal FIR dust emission (undetected at UV because of dust obscuration)

Gravitational lens model

simulated morphology of the source with 3 elliptical Gaussian light profiles - 2 knots + tai
 match of their flux + shape to the photometry of the observed HST image (left panel)

- Total magnification $\mu_{B+C+D+E} = 62\pm12$ (the contribution of the image F is negligible)
- Physical separation between the 2 UV-bright knots = 1.14±0.28 kpc
- The galaxy is small with a global size < 2.5 kpc
 - → typical for SFGs at 3 < z < 4 and with 9.5 < $log(M*/M_{\odot})$ < 10.5 (Buitrago+08;Shibuya+15)

PdBI 2mm continuum: Dust content

detected only in the most strongly amplified image C
 useful to estimate M_{dust} with a good constraint on the β-slope in the MBB fit

lensing-corrected values

M _{dust} (M⊙)	1.90E+07
T _{dust} (K)	43

log(M_{dust}/M*) ≈ -2.6 as expected Santini+10; Smith+12; Sklias+14

PdBI CO(6-5) emission: Kinematics

@ detected in all strongly amplified images B, C, D, E

OUV-bright knots separated by 0.8" unresolved in CO(6-5) (PdBI beam = 1.96"x 1.62")

Oduble-peaked CO(6-5) and CO(4-3) emission line profiles (velocity separation = 185 km/s)

In blue and red contours spatially offset (following the HST inversions from one counter-image to the other)

> suggestive of rotation in this z=3.63 MS SFG

JVLA CO(1-0) + radio continuum: Molecular gas + star formation spatial distributions

CO(1-0) securely detected in image C

CO(1-0) peaks between the 2 UV-bright knots (JVLA CO beam = 0.90"x 0.79")

radio continuum <u>also</u> peaks between the UV knots (5GHz beam = 0.87"x 0.62")

Test of the spatial origin of CO and radio continuum in the source plane:

Source plane:

CO/radio emission simulated by an extended elliptical Gaussian between the UV knots

Image plane:

corresponding beam-convolved CO(1-0) emission resembles the JVLA CO(1-0) observations

Total magnification B, C, D, E: $\mu \approx 65$ in CO/radio (against $\mu = 62\pm12$ in UV) \rightarrow negligible differential magnification

JVLA CO(1-0) + radio continuum: Molecular gas + star formation spatial distributions

© CO(1-0) securely detected in image C

CO(1-0) peaks between the 2 UV-bright knots (JVLA CO beam = 0.90"x 0.79")

radio continuum <u>also</u> peaks between the UV knots (5GHz beam = 0.87"x 0.62")

✓ Bulk of the molecular gas reservoir located between the UV-bright knots

✓ Same for the dust-obscured star formation ≈ 90% of the total star formation in MACJ0032-arc (traced here through synchrotron radiation)

lensing-corrected values

SFR_{radio} (M_☉/yr) 58

in very good agreement with SFR_{IR+UV}

CO SLED: Gas excitation state

Rare opportunity to characterize the CO SLED for high-J CO transitions in a MS SFG at a high z=3.63 with direct CO(1-0) measurement

<u>Motivation</u>: $L'_{CO(1-0)} \rightarrow M_{molgas}$

only high CO rotational transitions accessible at high z with NOEMA/ALMA J=6 up to z=7.2 J=4 up to z=4.5 Carilli & Walter 13

CO SLED: Gas excitation state

MACSJ0032-arc

highest J probed so far in a MS SFG
J≤6 CO transitions remain excited !!!
high r_{4,1}=0.58 and r_{6,1}=0.30 luminosity corrections
CO molecular gas highly excited
Comparison with other galaxies
clear SLED enhancement of high-z SFGs over the MW SLED Daddi+15; Fixsen+99
similar arc's SLED to that of high-z SMGs Bothwell+13; Spilker+14
Simulation predictions

 ✓ Papadopoulos+12: no turnover at J<6
 ✓ Narayanan & Krumholz 14: turnover at J=5-6 for the arc's Σ_{SFR}

✓ Bournaud+15: turnover at J=5

What causes this high CO excitation?

the compactness

the compactness induces a higher molecular gas density leading to more CO excitation by collisions with H₂ Solomon+97; Weiss+05,07 not mandatorily due to a merger (not supported by the MS nature and the kinematics in MACSJ0032-arc)

CO SLED: Gas excitation state

MACSJ0032-arc

highest J probed so far in a MS SFG
Js6 CO transitions remain excited !!!
high r_{4,1}=0.58 and r_{6,1}=0.30 luminosity corrections
CO molecular gas highly excited
Comparison with other galaxies
clear SLED enhancement of high-z SFGs over the MW SLED Daddi+15; Fixsen+99
similar arc's SLED to that of high-z SMGs Bothwell+13; Spilker+14
Simulation predictions

✓ Papadopoulos+12: no turnover at J<6
 ✓ Narayanan & Krumholz 14:

turnover at J=5-6 for the arc's Σ_{SFR} \checkmark Bournaud+15: turnover at J=5

What causes this high CO excitation?

the compactness

Possibly galaxies at higher z ($z \ge 3.5$) are more compact, and hence have more excited CO molecular gas, because of their smaller sizes

CO-to-H₂ conversion: Molecular gas mass

Known to vary with metallicity

 $\alpha_{\rm CO}^Z = \alpha_{\rm CO,MW} \times \chi(Z)$ with

 $\chi(Z) = 10^{-1.27(12 + \log(O/H)_{PP04} - 8.67)}$

(calibrated on local galaxies by Leroy+11; Bolatto+13)

With metallicities derived from the mass-metallicity z-dependent relation:

increases with z for any given M_* and at any given z, increases with decreasing M_*

MACSJ0032-arc

12+log(O/H)	7.9
$lpha$ z _{co} (M $_{\odot}$ /(K km/s pc²))	39

CO-detected SFGs from the literature

 α^{Z}_{CO} less extreme: lower z/higher M* $M_{molgas} = 9.60E+10 M_{\odot} \rightarrow \Sigma_{molgas} > 2.40E+4 M_{\odot}/pc^{2}$ while $\Sigma_{molgas} \sim 200 M_{\odot}/pc^{2}$ in MW GMCs and $\Sigma_{molgas} \sim 1.00E+4 M_{\odot}/pc^{2}$ in local ULIRG

CO-to-H₂ conversion: Molecular gas mass

Known to vary with metallicity

 $\alpha_{CO}^{Z} = \alpha_{CO,MW} \times \chi(Z)$ with $\alpha_{CO,ULIRG} \approx 0.8$ $\chi(Z) = 10^{-1.27(12 + \log(O/H)_{PP04} - 8.67)}$

(calibrated on local galaxies by Leroy+11; Bolatto+13)

Can be derived from dust mass

$$\alpha_{\rm CO}^{\rm dust} = \frac{1}{\delta_{\rm DGR}} \times \frac{M_{\rm dust}}{L'_{\rm CO(1-0)}}$$
 Magdis+1

with a metallicity-dependent dust-to-gas mass ratio (calibrated on local galaxies by Leroy+11)

MACSJ0032-arc

12+log(O/H)	7.9
$lpha$ z _{co} (M $_{\odot}$ /(K km/s pc²))	7 🔀
$lpha^{ m dust}_{ m CO}$ (M $_{\odot}$ /(K km/s pc²))	3.4
$lpha_{ m co}$ (M $_{\odot}$ /(K km/s pc²))	0.7

How to reconcile α^{Z}_{co} with α^{dust}_{co} ? - errors on $L'_{co(1-0)}$ and M_{dust} insufficient if when high CO excitation is accounted for

> equality solved for $Z \approx Z_{\odot}$ and $\alpha_{co} = 0.7$ (acceptable for an error on M* by a factor of 2-3)

Conclusions

Highest redshifted main sequence SFG (z=3.63) with measured stellar, dust, and molecular gas properties

M_{molgas} and star formation spatially decoupled from UV

~90% of the total SFR seen through thermal FIR dust emission and radio synchrotron radiation, undetected in UV because of obscuration by dust

The High-J CO transitions excited to $J \leq 6$: SLED resembling that of high-z SMGs

High CO gas excitation due to the galaxy's compactness (not mandatorily to a merger) possible trend for galaxies at higher z to be more compact

© CO excitation to be considered in the estimate of the CO-to-H₂ conversion factor

O t_{depl}(z), but at a lesser degree than predicted

Confirmed continued f_{molgas}(z) increase, despite a plateau between z~1.5-2.5