
Spin Properties of Supermassive Black Holes with Powerful Outflows

Ruth A Daly

Radio Image of Cygnus A; Carilli et al. (1991)

Studied a sample of powerful FRII (classical double) radio sources for which have estimates of fundamental physical variables

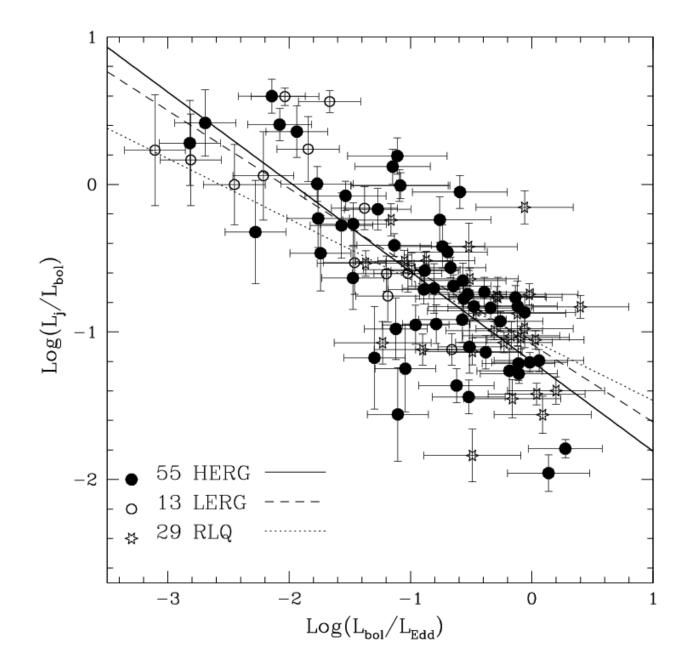
L_i, M, L_{bol}

to learn about the spin properties of the sources

Beam Power of the jet powering the large-scale radio source is L_j = dE/dt; The black hole mass is M, and the bolometric luminosity of the accretion disk is L_{bol}

The **beam power** ($L_j = dE/dt$) is obtained by studying multi-frequency radio maps of the extended radio emitting regions of the source – these regions are isotropic emitters and **are not affected by Doppler beaming of radiation**. The equations of strong shock physics are applied to obtain the beam power; done in collaboration with Chris O'Dea, Preeti Kharb, and Stefi Baum.

Parent population - powerful FRII sources


L_i from O'Dea et al. (2009) and Daly & Sprinkle (2014)

 L_{bol} is obtained from the [OIII] λ 5007 luminosities listed by Willott (L_{bol} = 3500 L_{OIII}) (Heckman et al. 2004; Dicken et al. 2014 using Spitzer Mid-IR show that [OIII] is one of the best indicators of L_{bol} ; Hardcastle et al. 2009 and Mingo et al. 2014 find similar results.)

M is obtained from McLure et al. (2006)

=> a sample of 29 RLQ; 55 HERG; and 13 LERG with z from about 0 to 2.

Results presented here are summarized by Daly, 2016, MNRAS, 458, L24

Clear sequence from LERG \rightarrow HERG \rightarrow RLQ as L_{bol}/L_{EDD} \uparrow and L_j/L_{bol} \downarrow (with overlap)

Slopes of best fit lines: (all fits are unweighted)

55 HERG: - 0.61 ± 0.07

13 LERG: - 0.53 ± 0.15

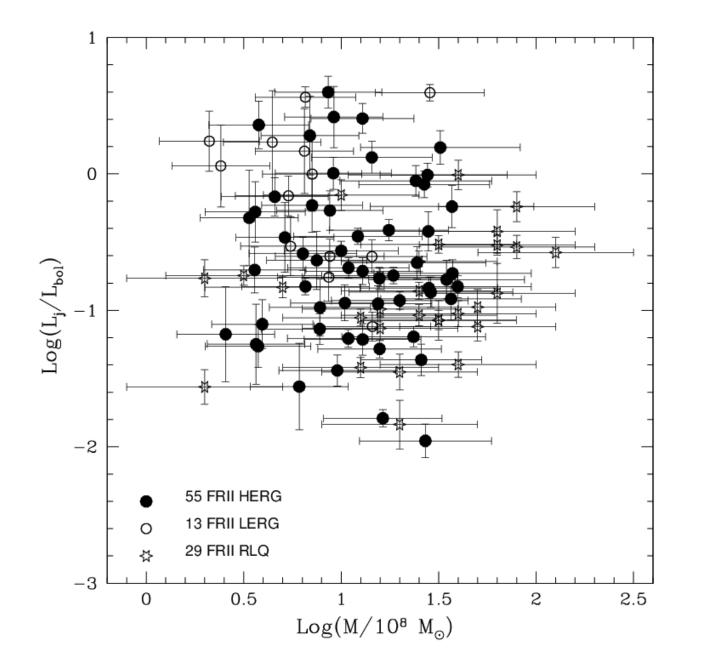
29 RLQ: -0.41 ± 0.15

All sources: - 0.56 ± 0.05

Slopes are consistent => a value of - 0.5

Key empirical results:

$$(L_j / L_{bol}) \propto (L_{bol} / L_{EDD})^{-1/2}$$


Now $L_{bol} \propto (\epsilon dM/dt) => L_{bol} \propto (\epsilon \dot{m} M)$ where $\dot{m} = (dM/dt)/(dM_{EDD}/dt)$ And $dM_{EDD}/dt = L_{EDD} c^{-2}$

Parameterize the beam power as $L_j \propto [\dot{m}^a M^b f(j)]$ where j is the spin of the black hole

Combining these expressions indicates that

ṁ^a M^b f(j) ∝ (ε ṁ)^{1/2} M

This suggests that b = 1, in which case the ratio of L_j/L_{bol} is expected to be independent of M, which it is

There is no correlation between L_j / L_{bol} and black hole mass M

Slopes of best fit lines: (all fits are unweighted)

55HERG: - 0.07 ± 0.24

13 LERG: - 0.40 ± 0.51

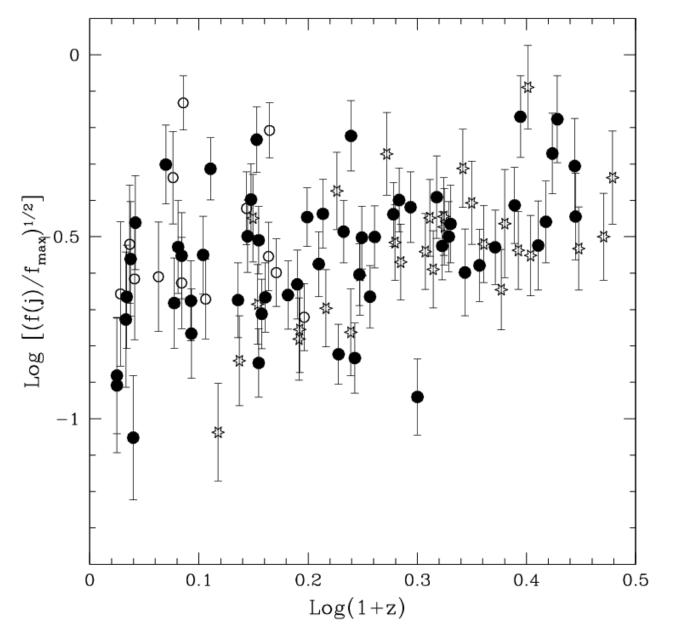
29 RLQ: - 0.26 ± 0.17

All sources: - 0.17 ± 0.14

This implies that $L_i \propto \dot{m}^a M f(j) \propto (\epsilon \dot{m})^{1/2} M$

The simplest solutions are [$\epsilon \propto \dot{m}$ and a = 1] or [ϵ = constant and $a = \frac{1}{2}$]

Consider the solution $\varepsilon \propto \dot{m}$ and a = 1:

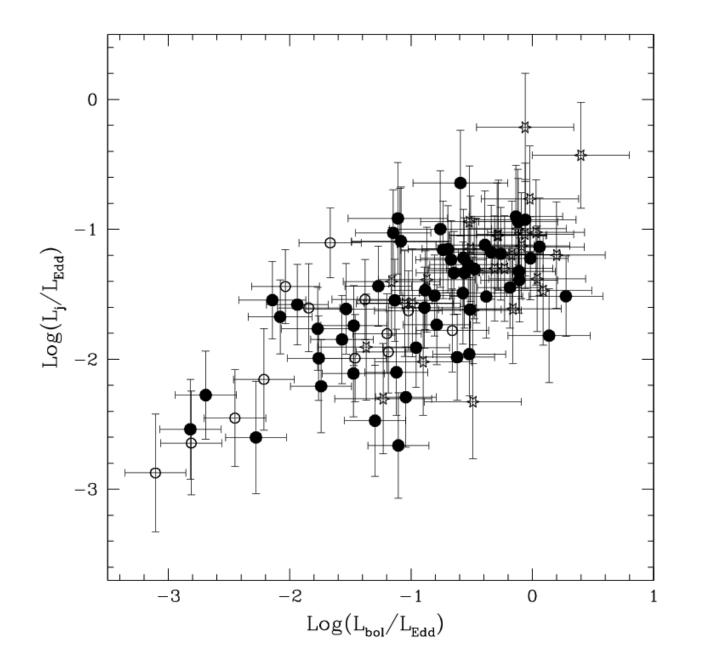

For the generalized BZ process, $L_j \propto B^2 M^2 f(j)$ (e.g. Blandford & Znajek 1977; Blandford 1990; Tchekhovskoy, Narayan, & McKinney 2010) In most accretion disk models, including ADAF and MAD: $B^2 \propto (\dot{m} M^{-1})$ Which implies that $L_j \propto (\dot{m} M) f(j) =>$ matches sol. with a = 1 So the generalized BZ process of powering outflows is consistent with the relationships between L_j , L_{bol} , and L_{EDD} obtained here. In general, the data indicate that $(L_j/L_{bol}) \propto (L_{bol}/L_{EDD})^{-1/2}$ Combine this with the expressions for L_j and L_{bol} normalized so that the maximum value of L_j (max) = $g_j L_{EDD}$ and that of L_{bol} (max) = $g_b L_{EDD}$ implies that

> $\dot{m}^{a} = (\epsilon \dot{m})^{1/2}$ $L_{bol,44} = 130 g_{b} (\epsilon \dot{m}) M_{8}$ $L_{j,44} = 130 g_{j} \dot{m}^{a} M_{8} f(j)/f_{max}$

which imply that the spin function is

 $f(j)/f_{max} = (L_{j,44}/g_j) (g_b/[130 L_{bol,44} M_8])^{1/2}$

Independent of the value of a (and hence of the outflow model)

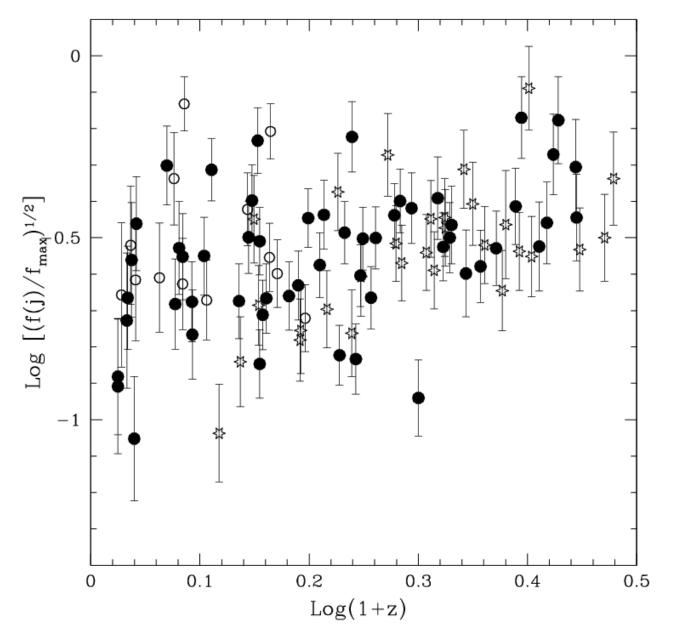

For many processes $[f(j)/f_{max}]^{1/2} \propto j$ to 1st order in j

Range of values similar for all AGN types, suggesting that spin and AGN type are not related

Obtained for $g_b = 1$ and $g_j = 1$. As shown on the next slide, the data indicate that $g_b \approx 1$ and $g_i < \text{or} = 1$.

So $f(j)/f_{max}$ can only be greater than or equal to that shown here, and can only increase until the maximum values ≈ 1 . Since

 $f(j)/f_{max} = (L_{j,44}/g_j) (g_b/[130 L_{bol,44} M_8])^{1/2}$

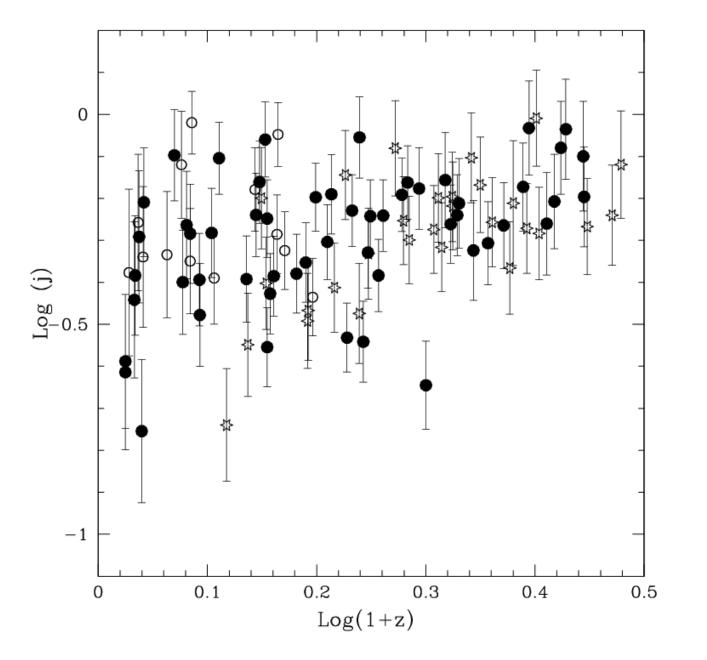


 $L_{bol} (max) = g_b L_{EDD}$ $L_j (max) = g_j L_{EDD}$

This indicates that $g_b \approx 1$ and g_j is between about 0.4 and 1

 $f(j)/f_{max} = (L_{j,44}/g_j) x$ $(g_b/[130L_{bol,44} M_8])^{1/2}$

f(j)/f_{max} can increase slightly but cannot decrease



For many processes $[f(j)/f_{max}]^{1/2} \propto j$ to 1st order in j

Range of values similar for all AGN types, suggesting that spin and AGN type are not related

Obtained for $g_b = 1$ and $g_j = 1$. As shown on the next slide, the data indicate that $g_b \approx 1$ and $g_i < \text{or} = 1$.

So f(j)/f_{max} can only be greater than or equal to that shown here, and can only increase until the maximum values \approx 1. Since f(j)/f_{max} = (L_{j,44} /g_j) (g_b/[130 L_{bol,44} M₈])^{1/2}

In the generalized BZ model $(f(j)/f_{max})^{1/2} = j (1+ [1-j^2]^{1/2})^{-1}$ (e.g. Blandford & Znajek 1977; Tchekhovskoy et al. 2010; Yuan & Narayan 2014).

Spin j obtained in the generalized BZ model with $g_j = 1$ and $g_b = 1$.

Most values of j lie between about 0.3 and 1.

Summary and Conclusion

A sample of 55 HERG, 13 LERG, and 29 RLQ with 0 < z < 2 for which L_{bol} of the accretion disk, L_i of the outflow, and M of the BH are known was studied.

The empirical relations obtained were similar for all types of sources and indicate that L_j/L_{bol} is independent of M, and

$$L_j/L_{bol} \propto (L_{bol}/L_{EDD})^{-1/2}$$

Writing

 $L_{bol} \propto (\epsilon \dot{m} M)$ and $L_j \propto [\dot{m}^a M^b f(j)]$

and applying the empirically determined relations it was found that one solution has a functional form for L_i that is identical to that expected in the generalized BZ model.

The general solution (valid for all values of a) allows a determination of the spin function $f(j)/f_{max}$ independent of specific outflow models. A broad range of values is obtained, and similar values are obtained for all types of sources, suggesting that AGN type and spin are not related.

The spin function $f(j)/f_{max}$ was interpreted in the context of the generalized BZ model to obtain specific values of the black hole spin j; most values lie between about 0.3 and 1.