Probing Cosmological Reionization with the High-redshift Lyman-**α** Forest:

Anson D'Aloisio University of Washington

In collaboration with: Matt McQuinn (UW) Phoebe Upton Sanderbeck (UW), and Hy Trac (CMU) Aspen Center for Physics, 3/10/16

The High-Redshift Ly**\alpha** Forest

- Most $z\sim 6$ segments of the forest show some transmission
- ⇒ Reionization largely complete (McGreer et al. 2015)
- Measured transmission also constrains UV background after reionization.
 (Bolton & Haehnelt 2007; Becker & Bolton 2013)
 - Note: large sightline to sightline variations!

150 Mpc trough!

From Becker et al. 2015

Quantifying Ly α Forest Opacity

From Becker et al. (2015) and Fan et al. (2006)

Dispersion in τ_{eff}

IGM Density Fluctuations are not Enough

 $T^{-0.7}$

 $au_{
m Lylpha} \propto$

From Becker et al. (2015)

Ionizing Background Fluctuations (galaxies)

• Mean free path varies over large scales (Davies & Furlanetto 2015)

 \bullet Under-dense voids must become the most opaque (largest τ_{eff}).

- Requires <MFP> < 20 Mpc at z =5.6
- MFP = 65 ± 10 Mpc at z=5.2 Worseck et al. (2014)

Ionizing Background Fluctuations (galaxies)

• Mean free path varies over large scales (Davies & Furlanetto 2015)

• Under-dense voids must become the most opaque (largest τ_{eff}).

• Requires <MFP> < 20 Mpc at z =5.6

• MFP = 65 ± 10 Mpc at z=5.2 Worseck et al. (2014)

Requires a factor of 2 decrease in galaxy emissivity over just 100 million years.

(Hubble time is ~1 billion yrs.)

See D'Aloisio et al. in prep.;

00

Rare Sources (Quasars/AGN)

See Chardin et al. 2015

Caveats:

(1) Most previous surveys \Rightarrow Not enough AGN at z > 5. (see however Giallongo et al. 2015)

(2) For larger AGN contribution, must block > 4 Ry radiation

- Reionization heats IGM to $T_{reion} = 20,000 30,000 \text{ K}$
- Heating processes: photoheating

• Cooling processes: adiabatic expansion, Compton, recombination, free-free

Reionization redshifts

- Reionization heats IGM to $T_{reion} = 20,000 30,000 \text{ K}$
- Heating processes: photoheating

• Cooling processes: adiabatic expansion, Compton, recombination, free-free

 $\frac{17}{\Delta_b^2}$

 $au_{\mathrm{Ly}lpha}$ C

Large Variations in the High-z Forest

Observed, from Becker et al. 2015)

Darkest segments were reionized earliest! New window into spatial structure of cosmic reionization?

 $au_{
m Lylpha} \propto rac{T^{-0.7} \Delta_b^2}{\Gamma}$

 $au_{
m Lylpha} \propto rac{T^{-0.7}\Delta_b^2}{\Gamma}$

Selling Points

- Red Curve: $\tau_{es} = 0.068$ Planck meas.: $\tau_{es} = 0.066 \pm 0.016$
- Matches observed evolution well; works at lower z too!
- Bonus: may open new window into reionization!

Where do we stand?

(1) Ionizing Background Fluctuations (Spatially Varying Mean Free Path)

Voids have less sources They see much lower ionizing background Absorbers are less ionized there, smaller MFP Voids are the most opaque

(2) Rare Sources (Quasars/AGN)

Opacity fluctuations driven by rarity and brightness of AGN AGN near most transmissive regions

(3) Relic Temperature Fluctuations from Reionization

Overdense regions are reionized first At $z \sim 5.5$, they are colder They have higher residual neutral H densities **Overdensities are the most opaque**