

GRBs at z>6: an inside view of re-ionizing galaxies **Antonino "Nino" Cucchiara**

Space Telescope Science Institute NASA-GSFC

Jason Tumlinson (STScl) Sylvain Veilleux (UMD) Jeff Valenti (STScI) Andrew Fruchter (STScI)

Brad Cenko (NASA-GSFC)

The Universe before JWST

HUDF, Frontier Fields have open a new window in the exploration of re-ionization

Mainly bright galaxies have been observed....maybe too bright...

At the same time **Gamma-ray Bursts** have been identified at up to z=8, providing a new tool to identify high-z galaxy and test early epoch star formation

The Universe before JWST

- After 25+ years of HST we are reaching the point of understand the nature galaxies at z>7
- Pushing the luminosity function at $z\sim 10$
- Testing the SFR density models

Can we test the "behind the scene" actors of Star-formation/reionization?

Re-ionization from first principles

Cosmological simulations allow us to model gas density and temperature of the Universe during re-ionization.

Pawlik et al. 2013 Fumagalli et al. 2011 Boylan-Kolchin et al. 2009

radiative transfer

analytic constant M/L

halo-smoothing

z=7.68

Furthermore re-ionization is likely a patchy process, making hard to identify the exact parameters due to line of sight to line of sight variation (Zahn+06,McQuinn+08).

Re-ionization from first principles

Cosmological simulations allow us to model gas density and temperature of the Universe during re-ionization.

Pawlik et al. 2013 Fumagalli et al. 2011 Boylan-Kolchin et al. 2009

Furthermore re-ionization is likely a patchy process, making hard to identify the exact parameters due to line of sight to line of sight variation (Zahn+06,McQuinn+08).

Using LBGs and LAE we can place observational constraints on the neutral hydrogen fraction (Bouwens +15,Robertson+15,McGreer+15,Stark+15).

Gamma-ray Bursts (GRBs) 101

Short GRBs GW (cool stuff!!!)

Long GRBs (also cool stuff!!

GRB 090423 and GRB 090429B

- GRBs occur at z>7
- At discovery they are BRIGHT!
- They are independent of the galaxy luminosity
- Pinpoint high-z "faint" galaxies
- They provide unique insights on starformation during re-ionization

Z	Look-Back Time (Gyr)	GRB	Optical Brightness
9.4	13.1	090429B	K = 19
8.2	13.0	090423	$\mathbf{K} = 20$
~8	13.0	120923A	
7.5	13.0	100905A	H~19
6.7	12.8	080813	K = 19
6.3	12.8	050904	J = 18
6.2	12.8	120521C	
5.6	12.6	060927	$\mathbf{I} = 16$
5.3	12.6	050814	$\mathbf{K}=18$
5.11	12.5	060522	$\mathbf{R}=\ 21$

GRB 090423 and GRB 090429B

- GRBs occur at z>7
- At discovery they are BRIGHT!
- They are independent of the galaxy luminosity
- Pinpoint high-z "faint" galaxies
- They provide unique insights on starformation during re-ionization

Z	Look-Back Time (Gyr)	GRB	Optical Brightness
9.4	13.1	090429B	K = 19
8.2	13.0	090423	$\mathbf{K} = 20$
~8	13.0	120923A	
7.5	13.0	100905A	H~19
6. 7	12.8	080813	K = 19
6.3	12.8	050904	$\mathbf{J}=18$
6.2	12.8	120521C	
5.6	12.6	060927	$\mathbf{I} = 16$
5.3	12.6	050814	$\mathbf{K}=18$
5.11	12.5	060522	$\mathbf{R}=\ 21$

GRB 090423 and GRB 090429B

KEY FACT

GRBs at z>7 stay bright for several days!! NIRCAM/NIRSPEC will be able to obtain photo-z

High S/N spectra enable re-ionization studies

High S/N spectra enable re-ionization studies

Fitting the red wing of the afterglow spectra allows to measure fundamental parameters of re-ionization. But requires good data (AKA high S/N spectra).

GRB 130606A, Totani+13

GRBs afterglow enable to answers some key questions?

- What is the metallicity of a galaxy at z>8?
- What is the reservoir of HI in these primordial objects?
- Can we constrain the neutral hydrogen fraction?
- Can we constrain the size of the primordial ionized regions?

hiara - Aspen 2016

The perfect recipe (Cucchiara in prep.)

We model a GRB afterglow spectrum including:

- Simple GRB continuum (the beauty of the beast)
- Absorption lines (host+intervening) at $0.01 < Z/Z_{sun} < 1.0$
- log(HI) > 17 cm⁻²
- $0.01 < x_{HI} < 1.0$
- A grid of IGM bubble size R_b: 1, 10, 60 Mpc

We simulated the following instruments:

JWST+NIRSPEC (not-official tool) TMT+IRIS (official) WFIRST-GRISM DCT+RIMAS (OH lines suppression)

WFIRST-GRISM 1.6LN 1.4 1.2Normalized flux 0.6 0.6 0.40.2 0.011400 1130011500116001170011800Observed Wavelength

JWST-NIRSPEC

z=8.2 J_{mag} =22 (S/N=10 with T_{exp}=900s) G140H (R~2700) Pixel scale: 2 Ang/pix Z/Z_{sun} = 0.1

Determine the ISM metallicity of z>8 galaxies

At $Z/Z_{sun} = 0.1$, GI40H= 900s, S/N I0 (J_{mag}=22)

The future, JWST+NIRSPEC

At $Z/Z_{sun} = 0.01$, G140H= 900s, S/N 10 (J_{mag}=22)

Re-ionization (preliminary)

Effect of R_b on the red wing

Re-ionization (preliminary)

TMT+IRIS (R~4000) spectrum of GRB130606A shifted at z=8.2 (HI=19.9)

JWST+NIRSPEC (R~2700) simulated spectrum of a at z=8.2, with HII size 10Mpc, HI=19.5 x_{HI}=0.01

Work to do

- Understand the error budgets (instrumental)
- Including sky transmission (IRIS)
- Perform observing strategies (slew response time for JWST)
- How many GRBs do we need to be sure we can constrain IGM

Conclusions

In the era of JWST and beyond (TMT, GMT, E-ELT) we will be able to move from stars to gas (ISM, IGM)

- GRBs a unique addition to the exploration of re-ionization
- Absorption lines analysis (OI, SII, FeII) will probe the ISM of primordial star-forming regions (ionizing bubble around first galaxies)
- High S/N spectra will help constraining the key ingredients of reionization (x_{HI} , HI, HII regions size).
- Rapid follow-up of z>8 GRBs is critical: combining space triggers (Gammaray) with ground based facilities (I-4m telescopes) + JWST/30m telescopes (spectroscopy)....promise I-10 z>8 GRBs!!

