2008 ASPEN WINTER WORKSHOP The first 2 billion years of Galaxy Formation

The MareNostrum Universe: Multi-billion particle simulations of High Redshift Galaxy Formation

Gustavo Yepes Universidad Autónoma de Madrid

Z=40.99

Universidad Autónoma de Madrid

The MareNostrum Numerical Cosmology Project

האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

NM NEW MEXICO STATE UNIVERSITY

International collaboration to perform GRAND CHALLENGE SIMULATIONS on the *MareNostrum* supercomputer

Different scales, physics, codes: (GADGET, ART)

➤ MareNostrum Universe SPH 2x1024³ particles

> Galaxy Cluster simulations. (AMR and SPH)

> MN Galaxy formation: > 2 G (dark+gas+stars)

> 71.4 Mpc. High redshift objects

Local Universe (SIMU-LU)

- > 160-64 Mpc . Local neighbourhood:
 - > The Local Group + Local Supercluster
 - > Upt to 1 Gparticle simulation.

The MareNostrum Numerical Cosmology Project

האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

NM NEW MEXICO STATE UNIVERSITY

International collaboration to perform GRAND CHALLENGE SIMULATIONS on the *MareNostrum* supercomputer

Different scales, physics, codes: (GADGET, ART)

MareNostrum Universe SPH 2x1024³ particles

> Galaxy Cluster simulations. (AMR and SPH)

> MN Galaxy formation: > 2 G (dark+gas+stars)

> 71.4 Mpc. High redshift objects

Local Universe (SIMU-LU)

> 160-64 Mpc . Local neighbourhood:

- > The Local Group + Local Supercluster
- > Upt to 1 Gparticle simulation.

MNCP: 2-G Gal Simulation One of the world's largest GALAXY FORMATION SIMULATION S

> 71.4 (50h⁻¹) Mpc box Gasdynamical and N-body simulation with 1024³ particles

> > (G)Astrophysics

Two different runs : SPH + N-body (2 x 1024³ particles) (GADGET2) AMR + N-body (1024³ + 4 billion AMR cells) (RAMSES)

(G)ASTROPHYSICAL PROCESSES

To study in detail the galaxy formation process we take into account:

Radiative and Compton cooling UV-photoionization Multiphase ISM. Star Formation.

Star-Gas back-reactions

SN's thermal Feedbacks: Cloud Evaporation and gas reheating Stellar Winds

Springel-Hernquist (2003) implementation of multiphase SPH modeling in GADGET-2.

Box 71.4 Mpc $2x 10^9$ gas+dark ACDM model WMAP1 $M_{gas}=1.4 \times 10^6$ Msun $M_{dark}=8 \times 10^6$ Msun $M_{halos} > 10^9$ Msun Smoothing: 700 pc. Starting z=50 currently at z=4.9

> Computational resources GADGET2 TreePM+SPH 800 processors of MN 1024³ mesh for FFT 11,100 timestep so far Total computing time: 2.7x10⁶ hours 313 years

MN UNIVERSE AMR SIMULATION

Same initial conditions than GADGET MN-2G simulation RAMSES (Teyssier 2002) AMR MPI code.

1024³ dark matter particles (M_{dark}= 8x10⁶ Msun)
4 billion AMR cells.
1024³ base grid +5 levels of refinement

(smallest cell is 2 kpc *physical*)

cooling, star formation, supernovae blast waves, metals
2048 processors of MareNostrum
120 years of CPU time.
Simulation at z =1.2 now
More than 100,000 galaxies
More than 120 million stars formed
Luminosity of stars computed from STARDUST model (Devriendt et al 99)

Dhttp://www.projet-horizon.fr

People behind

Gustavo Yepes Raúl Sevilla Luis Martínez N. Espino

Stefan Gottlöber

Arman Khalatyan Christian Wagner Y. Ascasibar R. Teyssier J. Devriendt C. Pichon D. Aubert E. Audit

• • •

Box 71.4 Mpc $2x \ 10^9 \text{ gas+dark}$ **ACDM** model $M_{gas} = 1.4 \times 10^6 Msun$ $M_{dark} = 8 \times 10^6 Msun.$ $M_{halos} > 10^9 Msun$ Halos Mass Functions FoF halo finder

20 dark matter

particles minimum

Box 71.4 Mpc $2x \ 10^9 \text{ gas+dark}$ **ACDM** model $M_{gas}=1.4 \text{ x}10^6 \text{ Msun}$ $M_{dark} = 8 \times 10^6 Msun.$ $M_{halos} > 10^9 Msun$ **Halos Mass Functions** FoF halo finder 20 dark matter

particles minimum

Box 71.4 Mpc $2x 10^9$ gas+dark LCDM model M_{gas} =1.4 x10⁶ Msun M_{dark} =8x10⁶ Msun. $M_{halos} > 10^9$ Msun

Stellar objects

FoF Group finder 50 stellar particles minimum

Box 71.4 Mpc $2x 10^9$ gas+dark LCDM model M_{gas} =1.4 x10⁶ Msun M_{dark} =8x10⁶ Msun. $M_{halos} > 10^9$ Msun

Stellar objects

FoF Group finder 50 stellar particles minimum

71.4 Mpc $2x \ 10^9 \text{ gas+dark}$ LCDM model M_{gas} =1.4 x10⁶ Msun M_{dark} =8x10⁶ Msun. $M_{halos} > 10^9$ Msun

Luminosity of stars

STARDUST SSP (Devriendt et al 99)

MNCP GADGET (SPH) 800 processors of MN Resolution: 700 pc. 313 YEARS of CPU

http://astro.ft.uam.es/marenostrum

HORIZON -RAMSES (AMR)

More than 2000 processors MN Resolution: 2 kpc 110 YEARS CPU http://www.projet-horizon.fr

MNCP GADGET (SPH) 800 processors of MN Resolution: 700 pc. 313 YEARS of CPU

http://astro.ft.uam.es/marenostrum

HORIZON -RAMSES (AMR)

More than 2000 processors MN Resolution: 2 kpc 110 YEARS CPU http://www.projet-horizon.fr

MNCP GADGET (SPH) 800 processors of MN Resolution: 700 pc. 313 YEARS of CPU

http://astro.ft.uam.es/marenostrum

HORIZON -RAMSES (AMR)

More than 2000 processors MN Resolution: 2 kpc 110 YEARS CPU

http://www.projet-horizon.fr

MNCP GADGET (SPH) 800 processors of MN Resolution: 700 pc. 313 YEARS of CPU

http://astro.ft.uam.es/marenostrum

HORIZON -RAMSES (AMR)

More than 2000 processors MN Resolution: 2 kpc 110 YEARS CPU

http://www.projet-horizon.fr

Grupo de Astrofísica

Grupo de Astrofísica

E(B-V) = 0.2

Universidad Autónoma de Mad

Grupo de Astrofísica

Change of faint end slope for z <6, when UV reionization is switched on.

slope for $z < \overline{6}$, when UV reionization is

Grupo de Astrofísic

Stellar Mass function @ z=6

Grupo de Astrofísica

Stellar Mass function @ z=7-3

Stellar density evolution @ z=11-5

Galaxy stellar Metallicity evolution

Positive correlation between Z and M_{*}

Most of the objects with $M_* < 10^{10}$ Msun have $Z/Z_{\odot} < 1/3$

Galaxy stellar Metallicity evolution

Positive correlation between Z and M_{*}

Most of the objects with $M_* < 10^{10}$ Msun have $Z/Z_{\odot} < 1/3$

Galaxy stellar Metallicity evolution

Positive correlation between Z and M_{*}

Most of the objects with $M_* < 10^{10}$ Msun have $Z/Z_{\odot} < 1/3$

CONCLUSIONS

- Multi-billion particles simulations run with two different codes:RAMSES and GADGET. Large statistical samples.
- Good agreement on the mass function and Luminosity functions at faint end between the two simulations
- The faint end LF flattens after z < 6 probably due to UV heating.
- Good agreement with observed LF @z=5-6 if

 \blacktriangleright E(B-V)_{z=6} = 0.15 and E(B-V)_{z=5} = 0.2.

- **>** Both simulations show that
 - ➤ The faint end slope for z=5 -6 is -1.6 -- -1.7, in very good agreement with HUDF.
- We do not see the steepening found in other GADGET simulations (Nagamine et al 08)
 - ▶ Stellar mass function flattens at M_{*} < 10⁹ Msun
 - Differences due to galaxy finders, modeling, initial conditions?

THANK YOU

MNCP

The MareNostrum Numerical Cosmology Project http://astro.ft.uam.es/marenostrum

> MareNostrum Universe Simulation: 2x1024³ 500/h Mpc SPH

• MN High z Galaxy Formation Simulation:

2x1024³ 50/h Mpc SPH +gastrophysics

- MN Local Universe Constrained Simulations
- 2x1024³ 64 to 320/h Mpc boxes N-body, SPH+gastrophysics

