How Population III Stars Begin Cosmological Reionization

John Wise (NASA / GSFC)

w/Tom Abel (KIPAC / Stanford)

arXiv:0710.4328

Population III Stars

- Various computational techniques have calculated and verified that the first stars are massive (30 300 M☉) and isolated.
 Abel et al. (2002), Bromm et al. (2002), Yoshida et al. (2006)
- $L \sim 10^6 L_{\odot}$, ~10⁵⁰ ionizing photons / sec
- Lifetime ~ 3 Myr

Schaerer (2002)

- H₂ is the main coolant, which is easily dissociated by distant sources of radiation.
- Provide the first ionizing radiation and metals to the universe.

Motivation

- To calculate key quantities that can be used in semianalytical or large box calculations.
 - Star formation rates, photon escape fractions, clumping factors, photo-evaporation, etc.
- To obtain the characteristics of low mass galaxies: baryon fractions, spin parameters that may affect star formation and photon escape fractions.
- Maybe deconvolve Pop III stellar properties from future observations of low mass z>6 galaxies?

Enzo

Versatile AMR Code

Bryan & Norman (1997, 1999); O'Shea (2005)

Physics: Gravity Hydrodynamics Non-equilibrium chemistry Radiation transport MHD

Refinement: Baryon overdensity Dark matter overdensity Jeans length by 16 cells

Truelove et al. (1997)

Stable to 41 levels (10¹⁴ dynamical range)

Wise, Turk, & Abel (2008)

John Wise

Enzo

Simulation Setup

- Two random phases:
 - Simulation "A" and "B"
- Atomic H, He, and H₂ cooling
- Population III stellar formation and feedback
- Radiation transport
- Supernova feedback and metal tracer field
- Max AMR level = 12 (0.1 pc at z=20)

	Simulation A	Simulation B
<mark>Initia</mark> l Redshift	130	120
Comoving Box Size	I.0 Mpc	I.5 Mpc
DM Mass Resolution	30 M ⊙	100 M⊙
Maximum # of Unique Cells	I.2 x 10 ⁸ (494 ³)	6.5 x 10 ⁷ (420 ³)

John Wise

Star Formation and Feedback

Modified Cen & Ostriker (1992) prescription.

Star formation only

- 100 M $_{\odot}$ stars, 1.2 x 10⁵⁰ ionizing photons / sec, 2.7 Myr lifetime Plus pair-instability SNe
- 170 M $_{\odot}$ stars, 2.3 x 10⁵⁰ ionizing photons / sec, 2.3 Myr lifetime

Model radiation with adaptive ray tracing

Adaptive Ray Tracing

- Radiative transfer is computed using an adaptive ray tracing technique.
- We require at least 5 rays per cell. Rays are split when this criterion is not met.
- Direction of the rays and splitting are determined by HEALPix.

Gorski et al. (2005)

- Fully integrated and coupled with the hydrodynamic, chemistry, and energy solvers in Enzo.
- Parallelized with MPI and dynamically load-balanced.

John Wise

Adaptive Ray Tracing

- Radiative transfer is computed using an adaptive ray tracing technique.
- We require at least 5 rays per cell. Rays are split when this criterion is not met.
- Direction of the rays and splitting are determined by HEALPix.
 - Gorski et al. (2005)
- Fully integrated and coupled with the hydrodynamic, chemistry, and energy solvers in Enzo.
- Parallelized with MPI and dynamically load-balanced.

Abel, Wise, & Bryan (2007)

HII Region of a Primordial Star

Temperature

10⁶ solar mass DM halo; single 100 M_☉ star (no SN)
Drives a 30 km/s shock wave, expelling most of the gas

John Wise

Density

Abel, Wise, & Bryan (2007)

HII Region of a Primordial Star

10⁶ solar mass DM halo; single 100 M_☉ star (no SN)
Drives a 30 km/s shock wave, expelling most of the gas

John Wise

Density

150 comoving kiloparsecs

physical kpc; z 0

Star Formation Rates

Bursting star formation in larger halos

 Higher SFR than analytical estimates because our simulations sample cosmologically overdense regions (3-σ)

John Wise

Ionized Fractions

- Emissivity in units of ionizing photons per baryon per Hubble time
- Ionizes the nearby IGM to 30% - 75%
- Beware: not representative of global ionization fractions – highly biased (i.e. inside out)

Effective Ionizations

John Wise

Effective Ionizations

The ratio $n_e / n_{ph} = 3-20\%$ takes into account both the UV photon escape fraction and the clumping factor.

Anisotropic H II Regions

HII regions become more anisotropic in larger halos

Photon escape fractions decrease with halo mass

John Wise

Clumpy IGM

John Wise

Clumpy IGM

John Wise

John Wise

John Wise

John Wise

John Wise

John Wise

Shortcomings

- Small box simulation highly biased region
- Neglecting self-shielding of Lyman-Werner radiation
- Fixed stellar mass no IMF
- Neglecting ~30 M_☉ ("Pop III.2") stars that may form in halos embedded in relic HII regions with HD cooling
- No metal cooling to study the transition to Pop II star formation

Future Directions?

- Similar simulations for less biased regions
 - External ionizing source from high sigma peaks. Use "semi-numerical" methods to predict ionization epoch based on a coarse grid?

Mesigner & Furlanetto (2007); Zahn et al. (2007)

- Sub-grid models for ~100 Mpc simulations
- Lyman-Werner radiation self-shielding
- Metal line, HD, and dust cooling

e.g. Glover & Jappsen (2007); Smith et al. (2007)

- Pop II star formation
- Larger boxes (3–5 Mpc) + Similar mass resolution → Larger halos (10⁹ – 10¹⁰ M_☉)

Even Low Mass Galaxies are Complex!

Isolated M_{vir} = 10⁸ M_☉ halo – Radiation Hydro – 100 Myr

Density

830 physical pc

Temperature

John Wise

Even Low Mass Galaxies are Complex!

Isolated M_{vir} = 10⁸ M⊙ halo – Radiation Hydro – 100 Myr

Density	Temperature
830 physical pc	1660 physical pc

arXiv:0710.4328

Conclusions

- Star formation is delayed for ~50 Myr after the first star.
 Once material is reincorporated into the halo, SFR ~ 10⁻² M_o/ yr/Mpc⁻³
- Clumping factors are highly variable but are, on average, a factor of 2 lower than in the adiabatic case without star formation
- Roughly I in IO ionizing photons result in a sustained ionization
- Jeans filtering mass is an excellent measure of the minimum halo mass that undergoes its 2nd instance of star formation.
- Only the beginning toward building galaxies one star at a time!