Simulating the Transition from the First Stars to the Second Stars

Britton Smith

Steinn Sigurdsson Brian O'Shea Mike Norman

Aspen 2-15-08

The First Stars: a well posed problem

• Initial conditions courtesy of The Big Bang

Thanks, WMAP.

The First Stars: a well posed problem

- Gas Chemistry: Big Bang Nucleosynthesis
 - H, He, and a little D and Li (metal-free)
 - D and Li relatively unimportant
 - Radiative cooling
 - $T > 10^4$ K: atomic H, He
 - $T < 10^4 K H_2$

- Formation controlled by H₂ physics (Bromm et al. 2002; Abel et al. 2002)
 - H₂ only low-temperature coolant
 - lowest rot. trans. ~512 K \rightarrow T_{min} ~ 200 K
 - states in LTE at n ~ 10^4 cm⁻³
 - NLTE: $\Lambda \propto n^2$ (efficient)
 - LTE: $\Lambda \propto n$ (inefficient)

Key Questions:

- How does the addition of metals alter the star-formation process?
- What chemical abundance is required to form the first low-mass stars?
- How rapid was the transition from Pop III to Pop II?
- What was the IMF of the first generation of Pop II stars? Is the IMF metallicity dependent?

The First Metals

- Cooling
 - fine-structure
 - molecules
 - dust (also helps form H₂)

The Transition to Pop II

The Transition to Pop II

Simulations with Enzo (Bryan & Norman 1997, O'Shea et al. 2004)

- Pre-enriched first star simulations
 - identical cosmological initial conditions (300h⁻¹ kpc box)
 - $Z = 0, 10^{-6}, 10^{-5}, 10^{-4}, 10^{-3.5}, 10^{-3} Z_{\odot}$
 - solar abundance patterns
 - non-eq H/He chemistry + tabulated metal cooling from Cloudy (all metals through Zn) (BDS, Sigurdsson, & Abel 2008)

Simulations with Enzo (Bryan & Norman 1997, O'Shea et al. 2004)

- refinement:
 - baryon/DM overdensity: 4/8
 - jeans length: 16 cells
 - time-step $< t_{cool}$
- stop after 24 levels of refinement (10¹⁰ dynamic range)

• z_{col} ~ 15

$Z = 10^{-3} Z_{\odot}$ without CMB!

Three Modes of Star Formation

- Z < Z_{cr}: primordial (M_{char} = few x 10³ M_☉) cooling cannot prevent loitering phase, collapse proceeds like metal-free case.
- $Z_{cr} \leq Z \leq Z_{CMB}$: metallicity-regulated (M_{char} = few M_o) cools past loitering phase, does not reach T_{CMB}.
- $Z \ge Z_{CMB}$: CMB-regulated ($M_{char} = \text{few x } 10^2 M_{\odot}$) cools rapidly to T_{CMB} where frag. stops.

Caveats

- $M_{char} \neq M_{star}$: stellar mass depends on accretion and feedback
- rotation: less rotation \rightarrow less fragmentation
- SN ejecta will not have solar pattern
- metal mixing important
- dust not included
- radiation field unknown

• the real ICs? - need Pop III supernovae

Summary

- fragmentation suppressed by CMB
- 2 threshold metallicities: Z_{cr} and Z_{CMB}
- 3 modes of star formation: primordial, metallicity-regulated, and CMB regulated
- star formation modes time dependent top heavy IMF in distant past
- when was star formation 'normal?'
 - GMCs:T ~ 10 K (easy answer)
 - $T_{CMB} = 10 \text{ K}$ at $z \sim 2.6 (2.6 \text{ Gyr after BB})$

Metal Cooling: The Method

- Before the simulation:
 - assume ionization equilibrium
 - pre-compute cooling rates over n,T,Z, etc.
 - subtract H/He cooling: only metals left
- During the simulation:
 - follow H/He chemistry: H, H⁺, H⁻, H₂, H₂⁺, He, He⁺, He⁺⁺, e⁻
 - calculate H/He cooling directly (H₂!)
 - interpolate metal cooling from data-grid