CO Emission from z~6 Quasars: Black Hole, Bulge and Dynamical Masses

Desika Narayanan

University of Arizona Harvard-Smithsonian CfA

Radiative Transfer Modeling Chris Walker Romeel Davé

Cosmological/Hydrodynamic Modeling

Yuexing Li T.J. Cox Lars Hernquist Philip Hopkins

CO in z=6.42 quasar J1148+5251

Quasars z~6

- CO Flux density peak at ~J=6
- SFR~3000 M_o/yr
- 2 component morphology
- H₂ mass=1x10¹⁰ M_☉
- BH mass~10⁹ M₀ (Willott et al.)
- σ~120 km/s linewidth = 5X10¹⁰ M_☉ dynamical mass
- (no 10¹² M₀ bulge?)

M_{BH}≈0.002M_{star}

Walter et al, 2004 Bertoldi et al. 2004

z~6 Quasar Formation Simulations

- Structure Formation models to identify most massive halo
- Resimulate most massive halos (10¹²-10¹³M⊙ at z=6) to derive merger tree
- Hydrodynamically simulate galaxy mergers: GADGET-2
- 3 galaxies chosen for this study (10¹²-10¹³M⊙ at z=6)
 Y. Li et al (2007a,b)
 Y. Li et al. in prep

z~6 Quasar

Non-LTE Radiative Transfer

- 3D Monte Carlo code developed based on improved Bernes (1979) algorithm
- Benchmarked against Leiden non-LTE radiative transfer tests
- Sub-grid algorithm considering mass spectrum GMCs as SIS
- M_{cloud} =10⁴-10⁶ M_{\odot} , Galactic CO Abundance, 10 CO transitions, 10 million rays per iteration

Gas-rich Spiral Example CO J=1-0

Simulated CO (J=1-0) Morphology

CO Excitation: CO SEDs

Simulations

Observations

CO Emission Lines

Large virial velocities in massive halo (σ~300-800 km/s) manifested in large CO line widths

CO Emission Lines

Large virial velocities in massive halo (σ ~300-800 km/s) manifested in large CO line widths

Sightline-Dependent CO Line Widths: Most Extreme Halo as an Example

1. Large range of line widths permitted owing to different viewing angles of molecular disk

2. Time Evolution in mean sightline-averaged CO line width

Sightline-Dependent CO Line Widths: Most Extreme Halo as an Example

CO FWHM-QSO Luminosity Relation

Optically Luminous LOSs have small CO FWHMs because of molecular disk formation

Desika Narayanan Aspen Winter Meeting 2008 Narayanan et al. (2008)

Selection Effect

Highest B-band Luminosities have higher percentages of compatible sightlines because of selection effects:

10-25% of sightlines compatible with observations (Halo Mass Dependent)

Observable Tests (How Have We Gotten Here?) z= 10.32 z= 9.17 z= 12.75 10° Mass (M_®) 10^ª 20 kpc 3.6 10' 7= 7.63 z= 0.63 z= 8.16 M_{BH} 0.002M_{star} 10 10° 12 10 6 14 8 4 z= 6.54 z= 4.99 z= 7.00 Redshift z 1000 0 676 1351 2027 800 Mean $\sigma \, (\mathrm{km} \, \mathrm{s}^{-1})$ 600 0.6 ^{0.4} ک 400 0.2 200 0.0 0 km s⁻¹ -500 500 1000 8.0 7.5 7.0 6.5 6.0 5.5 Z Desika Narayanan Aspen Winter Meeting 2008

Observable Tests:

 Line widths of future z~6 quasar detections (should be broad(er)!)

2. Line widths of galaxies and quasars which form in comparable 10^{12} - 10^{13} M_{\odot} halos at z~2 (SMGs, z=2 QSOs)

2. Line widths of galaxies and quasars which form in comparable 10^{12} - 10^{13} M_{\odot} halos at z~2

z~2: Carilli & Wang 2006

FWHM (z=2) = Sqrt(1+z=2)/Sqrt(1+z=6) * FWHM (z=6)

Conclusions

- Merger driven model for z~6 Quasar formation which lies on the present-day Magorrian relation well supported by simulated CO morphology and line widths
- CO emission line widths in first quasars predicted to have σ =300-500 km/s if qso's form in massive halos, consistent with virial velocity of halo
- Molecular Disk formation may bias optically selected quasars toward narrow CO line widths
- Linewidths of z~2 qso's and SMGs naturally explained in this model