LAEs and LBGs at z=3-6 in Cosmological SPH Simulations

Ken Nagamine UNLV

arXiv: 0802.0228

collaborators: M. Ouchi, V. Springel, L. Hernquist

Large-scale structure traced by LAEs at z~6

COSMOLOGICAL HYDRODYNAMIC SIMULATIONS

- model galaxy formation from first principles in a ΛCDM universe
- GADGET2 Smoothed Particle Hydrodynamics code (Springel '05) radiative cooling/heating, star formation, SN & galactic wind feedback
 - LBGs@z=3-6, massive gal@z=1-2, DLAs, (KN+04ab, 05ab)

Box size	N _p	$m_{\rm DM}$	m _{gas}	ϵ	Zend	Wind
10.00	2×144^{3}	2.42×10^{7}	3.72×10^{6}	2.78	2.75	None
10.00	2×144^{3}	2.42×10^{7}	3.72×10^{6}	2.78	2.75	Weak
10.00	2×144^{3}	2.42×10^{7}	3.72×10^{6}	2.78	2.75	Strong
10.00	2×216^{3}	7.16×10^{6}	1.10×10^{6}	1.85	2.75	Strong
10.00	2×324^{3}	2.12×10^{6}	3.26×10^{5}	1.23	2.75	Strong
33.75	2×216^{3}	2.75×10^{8}	4.24×10^{7}	6.25	1.00	Strong
33.75	2×324^{3}	8.15×10^{7}	1.26×10^{7}	4.17	1.00	Strong
100.0	2×324^3	2.12×10^{9}	3.26×10^{8}	8.00	0.00	Strong
100.0	2×486^{3}	6.29×10^{8}	9.67×10^{7}	5.00	0.00	Strong
$-[h^{-1}Mpc]$]	$-[h^{-1}M_{\odot}]$	[h^{-1} kp	c	

At z=3, things look good.

Lyα LF

Two simple scenarios

• "Escape fraction" scenario:

• all LBGs emit Ly α emission, but uniformly attenuated by a factor of $f_{Ly\alpha}$: $L_{Ly\alpha}^{observed} = f_{Ly\alpha}L_{Ly\alpha}^{sim}$

$$f_{\mathrm{Ly}\alpha} = f_{\mathrm{dust}} \left(1 - f_{\mathrm{esc}}^{\mathrm{ion}}\right) f_{\mathrm{IGM}},$$

• "Duty cycle" scenario:

only a fraction C_{duty} of starforming gals are active as LAE

Lya LF @ z=3

Data points: Ouchi+'08

f_{IGM}=0.82 (Madau+ '95)

Lya LF @ z=6

Escape fraction scenario Duty cycle scenario -2-12 З 0 2 З -11 4 0 1 \log SFR $[M_{\odot}yr^{-1}]$ $\log SFR'[M_{\odot}yr^{-1}]$ 0 0 z=6z=6Q6 $f_{Ly\alpha} = 0.15$ $C_{duty} = 0.2$ Q6 D5 log dn/dlogL [Mpc⁻³] + R log dn/dlogL [Mpc⁻³] + & 2 -2 D5Ouchi+ '08 G6 G6Duty cycle scenario Escape fraction scenario IGM corr -6-641 42 43 44 45 41 42 43 44 45 40 40 $\log \ L_{_{Ly\alpha}} \ [erg \ s^{-1}]$ $\log L_{Ly\alpha} [erg s^{-1}]$

yellow shade: Santos+ '04

f_{IGM}=0.52 (Madau+ '95)

Specific SFR vs. M*

SF efficiency declines from z=6 to z=3.

M* vs. SFR (a)z=3

This comparison favors the Duty cycle scenario.

 M^* vs. SFR @z=6

Not enough data @z=6.

UV LF of LAEs & LBGs

UV LFs of LAEs & LBGs can be described well, provided E(B-V)~0.15 for both population. (But recent obs suggest Ebv<~0.05)

Again, duty cycle scenario is favored.

We might be overpredicting the bright-end of the UV LF @z=6.

Correlation & Bias

Summary of Parameters

Parameter	Escape Fract $z = 3$	tion Scenario $z = 6$	Duty Cycl $z = 3$	le Scenario $z = 6$
${f_{{ m Ly}lpha}}^a_{f_{{ m IGM}}}{}^b_b$	0.10 0.82 (1.0)	$0.15 \\ 0.52 (1.0)$	0.82 (1.0)	0.52(1.0)
$f_{ m esc}^{ m ion} egin{array}{c} c \ f_{ m dust} \end{array}^{} d$	$0.06 \\ 0.13 \ (0.11)$	$0.20 \\ 0.36 \ (0.19)$		
$C_{ m duty}~^e$			$0.07\ (0.06)$	0.2 (0.06)
$\log(M_{\star}/M_{\odot})^{f}$	[10.2, 12.1]	[9.3, 11.0]	[9.2, 11.3]	[8.6, 10.3]
$\langle M_{\star}/M_{\odot} \rangle$ ^g	2.5×10^{10}	1.9×10^9	3.8×10^9	6.1×10^8
ρ_{\star} fraction h	0.18	0.11	0.42	0.29
$\log(M_{\rm BH}/M_{\odot})~^i$	[7.7, 9.7]	[6.9, 8.7]	[6.7, 8.8]	[6.3, 8.0]
$\langle M_{\rm BH}/M_\odot \rangle ~^j$	$1.0 imes 10^8$	$9.5 imes 10^6$	$1.5 imes 10^7$	3.1×10^6
$\log(Z/Z_{\odot})^{-k}$	[-0.7, 0.1]	[-1.3, -0.3]	[-1.0, 0.1]	[-1.4, -0.5]
$\langle Z/Z_{\odot} angle$ m	0.39	0.17	0.21	0.11
$r_0 \stackrel{n}{\gamma} p \atop b q$	5.5 1.67 3.5 (< 6.0)	4.4 1.68 5.0 (< 8.0)	(3.2) (2.30) (1.6-4.6)	$3.1 \\ 1.49 \\ 4.0$

Duty cycle scenario: lower M*, lower Z/Z_•, less clustered, smaller bias

Cosmic Variance

- LFs in FoV=0.2 deg² show significant scatter
- Need FoV>Ideg² for a reliable LF.

yellow shade: ⁴² Ouchi+ '08 FoV=0.2 deg² subfields

Conclusions

- Duty cycle scenario is favored over the Escape fraction scenario from the comparisons of M*-SFR relation, UV LF of LAEs, clustering & bias.
- If duty cycle scenario is correct, then LAEs would be a population w/ lower M*, lower metallicity, less clustered and less biased.
- Cosmic variance is strong, and can account for the scatter seen in current LF data from FoV<I deg². (applies to both LBGs and LAEs)

arXiv: 0802.0228