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The Evolution of UV Luminosity Function

LBG LF measures from Bouwens et al. (2007)
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Luminosity Function vs. Mass Function

Galaxy LF: number of galaxies
per unit volume per luminosity
(or magnitude) -- number counts
of galaxies in luminosity space

Halo MF: number of halos per
unit volume per mass M

A suitable L;,-M relation would
map one into the other at a given
cosmic time

Evolution of LF with redshift =
Evolution of halo MF
(cosmology) + Evolution of
L,v-M relation (astrophysics)

log[®(L)L] (h® Mpc-3)
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On the Clustering Front...

Strong L,,-dependence of LBG clustering suggests a correlation
between halo mass and UV luminosity (e.g., Giavalisco & Dickinson
2001, Allen et al. 2005, Adelberger et al. 2005, Ouchi et al. 2005, Lee
et al. 2006, Hilderbrandt et al. 2007)

Stochasticity in gas accretion, other star formation processes, and
random line of sight (w/ dust) imply scatter in the relation

L,-M relation seems to evolve w/ redshift (Lee et al. 2006) - expected
from simulations, and confirmed observationally

Characterize the mean and variance of L, ~-M relation -> this should
provide us the astrophysical component of LF evolution




Luminosity-Dependent LBG Clustering
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Evolution of L,-M,,,, Relation

m Galaxies at higher redshifts putout  ©| 107
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Efficiency of LBGs 1n Marking Halo sites

1) Selection efficiency: What fraction of general population at a given
cosmic epoch is observed as Lyman Break Galaxies?

2) Duty cycle of SF: What fraction of galaxies are on at a given time?

3) Halo occupation efficiency: Probability of observing galaxy of
luminosity L in a halo M. Some halos have visible galaxy, some
others don'’t. The efficiency is mass-dependent

In reality, what we observe includes all of these effects... can we
distinguish 2) and 1) from 3)?



Halo Occupation Efficiency
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Conventional method to use Clustering:
Halo Occupation Distribution (HOD)

m Halo mass function from Sheth & Tormen or Press & Schechter (number density
of halos as a function of mass) - clustering as a function of mass M well
understood

m Assume a form of HOD that gives the average number of galaxies for a given
halo mass M -- <N,(M)> usually modeled as:

(N(M))=1+(M/M,)*  (M=M,,)
Two free parameters

(N (M) = (M/M,)" (M=M,,)

m Assume how galaxies are distributed spatially within the halo (NFW profile like
DM), and their pair counts -- <Nj(Ng-1)>

m  Vary HOD parameters until it agrees with the observed w(0) measures

m  Obtain best-fit parameters for each luminosity subsample -> mean physical
parameters for the galaxy sample (M, 123, 023, My 453 for L5 3)




Why is HOD model not enough at high-z?

m  With unknown duty-cycle and halo occupation efficiency, the form of HOD is not
known - degeneracy in the derived physical parameters (e.g., minimum halo
mass to host galaxy, average host halo mass, etc.)

= HOD model contains little information on the L;,-M relation, constrains only in
cumulative sense.

10.000 [

1.000 [ a

0.010

0.001

R

outs

<= Aro
I

—
T

hick lines: Pu

re power—law |4

hin lines:

One—plus ||

Arcsec

<Ng>

B.ss dropouts
e o

L

:_ Minimum mass differ by

- a factor of 4-5

10" 10"
Halo Mass

4‘013

Lee et al. 2006



Luminosity Function as an extra constraint

m LF and CFs are derived from the same galaxies, and therefore
same halos and subhalos, so taking the observed LF measures
explicitly into the model....

= Kkeeps in check the type of degeneracy inherent in HOD model

» Ties correlation function measures of different luminosity
subsamples in a self-consistent way

= No need to know the shape of HOD a priori - HOD comes naturally
out of the best-fit L-M model

= (Can use the state-of-the-art simulations to correctly input DM
halo/subhalo properties into the model




Modeling L,-M relation

Ingredients: total halo/subhalo mass function, observed luminosity function,
correlation functions for luminosity subsamples

For a fixed halo mass M, we model the probability of a galaxy to have luminosity
L as a lognormal distribution (simplest model w/ least # of parameters):

O<dc<l 5
P(L,M)dInL = — exp[—(In qm!ﬂ)) 207 |dInL
( ) \N2mo(L/L(M)) P~

Total Halo Occupation Efficiency (M)= f ey EM)dINL

is a smoothly rising function (more massive halos are likely to
have more gas accretion) -- double power-law like

Fractional scatter o)is a declining function of mass (halo occupation efficiency is
lower for fainter galaxies)



Modeling L;,~-M relation (continued)

m The probability density of finding a galaxy of luminosity L in a halo/subhalo M is:
dn,
din M

a(L,M)dInLdInM = P(nLInM)S(InL —InL(M))dInLdIn M

m Luminosity Function Total mass function

In10

dn
O(M,) = f dln M —-=

dIn

P(nL,M)

= HOD <N,(M)> for a sample with luminosity threshold L,

Number of subhalo of mass m
In a parent halo M

(N,(M)), ‘f1 dinL P(InL,M)

(N, ), = [ amLf" de(lnL,M)N(mIM)/

(N,0D),_, =(N,(1),, +(N,(D),

=  Correlation Function w(6) for luminosity threshold L,
Can be calculated using the HOD <N4(M)> computed above




Model Predictions I - no scatter

LBG LF at z~4 Bouwens et al. 2007
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Model Predictions I - no scatter (continued)

A range of L;~-M consistent with the
observed luminosity function at z~4 when
no scatter is assumed (1,2,3 sigma)

The common feature is that there is a
minimum M/L;, around 10" -10"2 M,
to account for the observed faint-end
slope much shallower than the halo mass
function

But that’s not the end of the story.....
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Model Predictions I - no scatter (continued)

LF at z~4 from Bouwens et al. 2007
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Model Predictions I - no scatter (continued)

LF at z~4 from Bouwens et al. 2007
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Model Predictions I - no scatter (continued)

LF at z~4 from Bouwens et al. 2007
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Model Predictions II - Constant Duty-cycle

LBG LF at z~4 from Bouwens et al. 2007
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What have we learned?
What more do we need?

Mass-dependent scatter is really needed to reproduce the amplitude of the
luminosity dependence of clustering

Duty-cycle (at least in a simple case) can be distinguished from galaxy
occupation efficiency

Need to go wider to constrain the luminosity-dependent clustering at higher
luminosity (L>L*) e.g., COSMOS 2-deg? survey (KSL, MG, et al. in prep),
CFHTLS, SXDS, etc.

With large surveys, one can check, as an additional test, cross-correlation
function of independent luminosity samples -> provides further constraints to the
model

Go deeper: ACS GTO archival data set, many one-pointing fields with multi-
wavelength observations with depth comparable to GOODS, or deeper (UDF,
UDF-Ps, UGC10214)



Summary

m Joint analyses of clustering properties and LF is the key to unambiguously
constraining the evolution of the L;,~-M relation and galaxy duty cycle, and to
understanding the observed evolution of UV LF at these cosmic epochs

m  Current data suggest that not only scatter between mass and UV light is needed
but also it has to be mass dependent to match the observed luminosity-
dependent clustering

m  Constant duty-cycle (independent of mass) alone does not reproduce the
observed amplitude of luminosity dependence of clustering (bias does not
change significantly for low-mass halos)

m Larger area surveys and deeper surveys are needed to explore wider range of
luminosities and carry out independent checks



