Two (Other) Episodes in the Life of a Quasar

Zoltán Haiman

Columbia University

Winter Conference on Galaxy Formation

Aspen, CO 11-16 February, 2008

Outline of Talk

- Gravitational wave-emitting phase during the coalescence of a SMBH binary:
 - Can we identify the EM counterpart of a LISA source ?
 - Does GW kick produce an EM signal in circumbinary gas ?
 <u>Zoltan Lippai</u>, Zsolt Frei, ZH (2008)
- Fossil HII region of a dead quasar
 - how does such a fossil look like (e.g. in 21cm)?
 - what can we learn from them ?
 <u>Steve Furlanetto</u>, ZH & Peng Oh (2008)

Gravitational Waves from Coalescing BHs

- LISA can detect low-frequency gravitational waves from super-massive black hole binaries

 sensitive to (10⁵-10⁷)/(1+z) M_☉
 will clarify build-up of ~10⁹ M_☉ BHs at z>6
- Revolution for cosmology and gravitational physics:
 f (df/dt)⁻¹ →automatic 'standard siren' (Schutz 1980)
 can be used like Type Ia SNe, limited only by WL errors
 compare gravitons and photons: probe fundamental physics
- **Revolution for BH astrophysics / galaxy assembly:**
 - Eddington ratio, spectrum, as a function of BH mass, spin, orbital parameters (eccentricity, alignment)

Can we find EM Counterpart?

- Sky position error from LISA is poor (~0.3 deg²)
 10⁴⁻⁵ →10²⁻³ galaxies with LISA redshift info (i.e.: 3D)
 perhaps a unique near-Eddington quasar (Kocsis et al. 2005)
- EM signature produced by merger is not understood — hard problem, requires gas physics + GR + radiation
- But 'last parsec problem' suggests gas needed

 without gas, orbital decay / angular momentum loss time-scale exceeds Hubble time at r ~ 1 pc
 (Begelman, Blandford, Rees 1984)
- IF gas is still present at the GW-emitting phase

 accretion onto one or both holes (or to post-merger binary)
 modulations on orbital time-scale? post-merger shocks?
 (Kocsis et al. 2006; 2007)

Two Ways to Find EM Counterpart

LISA sky position of coalescing SMBH binary accurate to precision ~10 deg² typically with 3 weeks advance notice. Monitor area for hourly-daily variables at 24-27 mag, hoping that binary periodically perturbs ambient gas. (Kocsis, ZH & Menou 2007, 2008)

•

Gravitational recoil at coalescence can produce shocks in the ambient gas. Monitor final LISA error box ~months after the merger, for a corresponding transient "afterglow".
 (Lippai, Frei & ZH 2008)

Time dependence of localization

distance uncertainty

sky position uncertainty

Errors typically stop improving ~10 days before ISCO

The Effect of a Gravitational Kick

- **Gravitational radiation produces sudden recoil**
 - from conservation of linear momentum, near ISCO
 - kick velocity depends on mass ratio and on spin vectors
 - typical v(kick) ~ few \times 100 km/s (Baker et al. 2006, 2007 **Gonzalez et al. 2007)**
 - maximum v(kick) ~ 4,000 km/s
 - Most important at high redshift when halos are small — escape velocities from z>6 halos is few $\times 10$ km/s — major obstacle to building $\sim 10^9$ M_{\odot} BHs by z>6 — requires a super-Eddington growth phase (**ZH 2004**)
- **Does the kick produce a prompt EM signal?** — perhaps, if there is circumbinary gas (Lippai et al. 2008)

Effect of Kick on Circumbinary Disk

Lippai, Frei & Haiman (ApJL 2008, in press)

- **Properties of disk:**
 - geometrically thin (cold) accretion disk, susceptible to shocks
 - inner cavity, evacuated by torques (out to $\sim 100 \text{ R}_{s}$)
 - disk gravitationally unstable beyond $\sim 10,000 R_s$
 - --- v(orbit) ~ 20,000 km/s \rightarrow 2,000 km/s
 - inner[outer] disk tightly[weakly] bound to kicked binary
 - disk mass low ($M_{disk} \sim 10^{-4} M_{BH}$): no effect on BH trajectory
- **Response of pressureless ("dark matter") disk:**
 - start with massless test particles on circular orbits
 - add instantaneous v(kick), parallel or perpendicular to disk
 - follow Kepler orbits (ellipses) for N=10⁶ particles

Planar Kick Results in a Spiral Caustic $M_{BH} = M_1 + M_2 = 10^6 M_{\odot}$ $(R_{cavity} = 100 R_s = 2 AU)$ $v_{kick} = 500 \text{ km/s}$ (kick in the disk plane)t = 90 days $(t_{cavity} = R_{cavity} / v_{kick} = 7 \text{ days})$

Perpendicular kick: Concentric Density Enhancements

(otherwise same parameters)

Why are the spiral caustics interesting?

- Suggests prompt "afterglow" for SMBH coalescence:
 - caustic propagates outward with speed ~ v_{kick}
 - infall speed into caustic is $v_{\text{caustic}} \sim v_{\text{kick}}^2 / v_{\text{orbit}}$
 - v_{caustic} becomes supersonic beyond ~700 R_s (at > 25 km/s)
 - gas shocks may produce strong emission (at >50 days)
- Can speculate about properties of afterglow:
 shocked gas heated to v_{shock} ~ v_{caustic} ~ 25 80 km/s
 - $-L_{disk} \sim 1/2 M_{disk} v_{shock}^2 / t_{shock}$
 - $M_{disk} \sim$ 50-1,200 M_{\odot} $\qquad t_{shock} \sim$ 50 days 2 years
 - $L_{disk} \sim 6 \times 10^{-4}$ 2 × 10⁻² L_{edd} not negligible.
 - Hardens from UV to soft X-ray (opposite of GRB afterglow)

Outline of Talk

- Gravitational wave-emitting phase during the coalescence of a SMBH binary:
 - Can we identify the EM counterpart of a LISA source ?
 - Does GW kick produce an EM signal in circumbinary gas ?
 <u>Bence Kocsis</u>, ZH, Kristen Menou (2007)
 <u>Zoltan Lippai</u>, Zsolt Frei, ZH (2008)
- Fossil HII region of a dead quasar
 - how does such a fossil look like (e.g. in 21cm)?
 - what can we learn from them ?
 <u>Steve Furlanetto</u>, ZH & Peng Oh (2008)

Fossil Quasar Bubbles

- Many pieces of evidence that bright quasar phase is short: -10^7 years $\leq t_0 \leq 10^8$ years (e.g. Martini 2004)
- Fiducial recombination time in z>6 IGM:
 - $-t_{rec} \approx t_{Hubble} \approx 5 \times 10^{8} \text{ years} \quad \text{at mean density at } z=8$ -fossils outnumber active bubbles by factor $t_{rec}/t_{O} \approx 5-50$
- Fossils affect the IGM, and are useful probes:

 large (40-50 comoving Mpc), prime targets for 21cm imaging
 probe quasar properties (Wyithe, Loeb & Barnes 2005; Zaroubi & Silk 2005; Kramer & ZH 2007)
 probe IGM properties (Lidz et al., Alvarez & Abel, Geil & Wyithe)
 - entropy floor even in recombined fossils (Oh & ZH 2003)
 - H₂ formation (Ricotti et al. 02; Kuhlen & Madau 05; Mesinger et al. 07)

How does HII region recombine?

- Recombination must be inhomogeneous:

 over-dense regions recombine quickly
 under-dense regions remain ionized for longer than t_{rec}
- **Pre-existing galaxies:**
 - mean free path in fossil starts much higher than outside
 - can pre-existing galaxies keep most of the fossil ionized?
 (easier than to ionize the region to begin with)
- How do we distinguish fossils?
 - "grey" bubble: reduced contrast relative to active bubbles but ionization nearly uniform
 - large size distinguishes them from rare large galaxy-bubbles

Fossil Recombination With Zero Flux

- Assume $\Gamma_{bg}=0$
- Follow ∆-dependent recombination
- cf: equivalent Δ_{crit}
 with P(Δ) from
 MHR00
 Miralda-Escude, Haehnelt
 & Rees (2000)
- Compute m.f.p. (including the under-dense voids)
- m.f.p. remains ~Mpc if $x_{HI} \lesssim 10^{-3} (at \Delta \sim 1)$

Fossil Evolution vs Global Reionization

- Semi-analytical reionization model
- Follow mean $\langle x_{HI} \rangle$ in z=10 fossil *vs* globally
- Additionally: follow Δ -dependent x_{HI} inside fossils
- Compute m.f.p. using MHR00
- c.f. clustering length of pre-existing galaxies

• uniform, high ionization

An Early Fossil (z=15)

- Probably much rarer than fossils from z=10
- Still remains highly ionized
- different from z=10
 fossil: m.f.p. drops
 below galaxy clustering
 length

• will develop (reduced contrast) swiss-cheese

Check validity of MHR00 m.f.p.

- Assume uniform Γ_{bg}
- neglect self-shielding
- Compute optical depth τ across one MHR00 m.f.p., including the under-dense voids
- z=10 fossil: $x_{HI} \lesssim 10^{-3}$ $\tau=0.9, 0.5, 0.4$
- z=15 fossil: τ=13, 4.5, 1.5, 0.7, 0.1

Conclusions

- Fossils outnumber active bubbles, last longer than t(rec)
- Fossils produced at z ≤ 10 remain highly and uniformly ionized "grey zones": look similar in 21cm to active bubbles, but with a reduced contrast
- Example: $\langle X_{HI} \rangle \sim 10-20\%$ in fossil, 70-80% outside.
- Nearly uniform ionization in fossil, swiss-cheese outside.
- Analogous fossils expected during helium reionization
- Makes "double-reionization" difficult to arrange