

Reionization signatures in QSOs and GRBs absorption spectra

Simona Gallerani

ELTE, Budapest

In collaboration with:

T. Choudhury, X. Fan, A. Ferrara, Z. Haiman, A. Maselli, R. Salvaterra

<u>QSO</u> spectra at high redshift

Becker et al. 2003

<u>Simulating the Lyα forest</u>

 $F(\mathbf{v}) = e^{-\tau(\mathbf{v})}$

optical depth at the $Ly\alpha$ transition

 $\tau(\mathbf{v}) = \int \boldsymbol{\sigma}_{Ly\alpha} n_{HI} dl$

Neutral hydrogen distribution

Baryonic density field

IGM ionization state

Log-Normal model

Coles & Jones (1991) Reionization model

Choudhury & Ferrara (2005/2006)

Reionization models

EARLY REIONIZATION (ERM)

LATE REIONIZATION (LRM)

Data from McDonald & Miralda-Escude'(2001); Bolton etal. (2005/2007); Fan etal.(2006)

Simulated spectra

z = 5.7 - 6.3

GAPS

Largest gap width distribution

Observations vs Simulations

Largest gap width distribution

Observations vs Simulations

Largest gap width distribution

Observations vs Simulations

Simulated spectra

Transmissivity windows

Largest peak width distribution

Observations vs Simulations

Low Redshift $(z_{em} < 6)$

High Redshift $(z_{em} > 6)$

Transverse proximity effect: observations

Transverse proximity effect: observations

Transverse proximity effect: simulations

SG, Ferrara, Fan, Choudhury (2007)

Transverse proximity effect: observations vs simulations

 $t_{Q} > \frac{R_{\tau} - R_{\perp}}{c} \approx 11 Myr$

Additional lighthouses: GRBs

*Afterglow spectra follow a power-law (easier continuum determination).

* GRBs are soon expected to be found at redshifts higher than QSOs ones. [GRB 050904 @ z=6.29 (Kawai et al. 2006)]

Observed GRBs absorption spectrum: GRB050904

Observed GRBs absorption spectrum: GRB050904

Observed GRBs absorption spectrum: GRB050904

Largest gap probability isocontours: GRBs

The *ERM* is twice more probable wrt the *LRM*

Largest gap probability isocontours: QSOs

Work in progress

J1148+5251

Conclusions

The analysis of **QSOs** and **GRBs** absorption spectra favors a **highly ionized IGM at z~6**, suggesting an **earlier epoch of reionization**.

