Galaxies at z~7-10

Rychard Bouwens (University of California, Santa Cruz)

Garth Illingworth

Special Thanks to Marijn Franx, Ivo Labbe, Larry Bradley, Louis Bergeron, Rodger Thompson, Dan Magee, John Blakeslee

> February 15, 2008 Aspen, Colorado The First Two Billion Years of Galaxy Formation: The Reionization Epoch and Beyond

Galaxies at z~4, 5, 6, 7.4 (B, V, i, z-dropouts) UV Luminosity Functions

Using all deep, wide-area ACS data to select large samples of dropouts at all redshifts

4671 z~4 B-dropouts,
1416 z~5 V-dropouts,
627 z~6 *i-dropouts*,
4 z~7.4 z-dropouts

Dropout Redshift Selection Functions

Bouwens, Illingworth et al 2007

Galaxies at z~7-8 (z-dropouts)

Dropout Redshift Selection Functions

Many fields with deep ACS and NICMOS data for dropout searches

~4 arcmin^2 of Ultra Deep (J₁₁₀ ~ H₁₆₀ >= 28 AB mag) NICMOS coverage

Many fields with deep ACS and NICMOS data for dropout searches

~72 arcmin² of Deep (J_{110} ~ H_{160} >= 26.5 AB mag) NICMOS coverage

Many fields with deep ACS and NICMOS data for dropout searches

~163 arcmin^2 of Deep (J >= 25.3 AB mag) ground-based coverage

Many fields with deep ACS and NICMOS data for dropout searches

~76 arcmin² of Deep (J_{110} ~ H_{160} >= 26.5 AB mag) NICMOS coverage

~163 arcmin² of Deep (J >= 25.3 AB mag) ground-based coverage

>4.5 sigma detections in J and H,
z-J > 0.8,
J-H < 1.2
No Detection in deep B, V, i data
Remove sources with point source morphologies in the z-band (to eliminate brown dwarfs)
Examine IRAC / MIPS data to exclude lower redshift sources

z ~ 7-8 Galaxies

10 z-dropouts found over many search fields

From the HUDF NICMOS Parallel Fields (4 arcmin²) (H₁₆₀ < 28.3 AB mag)

z ~ 7-8 Galaxies

10 z-dropouts found over many search fields

From the HUDF Thompson NICMOS Field (6 arcmin2) (H₁₆₀ < 27.4 AB mag)

z ~ 7-8 Galaxies

10 z-dropouts found over many search fields

From the Wide-Area NICMOS Data (41 arcmin²) (H₁₆₀ < 26.9 AB mag)

+ other z-dropout

10 z-dropouts found over many search fields

From the Ground-Based Data (163 arcmin²) (J < 25.6 AB mag)

10 z-dropouts found over many search fields

From the NICMOS Data Around Galaxy Clusters (H₁₆₀ < 27 AB mag)

Are we really finding z>7 galaxies?

- 5s detections in J, H, IRAC 3.6m channel, and 2.5 s in IRAC 4.5 m channel
- Very Blue J H colors
- Undetected in the HUDF B, V, i, and z band imaging
- (z-J) > 3 -- too red to be a brown dwarf
- (H 3.6m) colors similar to z~6 objects

and Decol Occep's talk)

Garth Will Buy Everyone Here a Beer if at z << 7 !

Are we really finding z>7 galaxies?

Distant Gravitationally Lensed Galaxy Galaxy Cluster Abell 1689 Hubble Space Telescope ACS/WFC NICMOS

Will Larry Buy Everyone Here a Beer if at z << 7 ?

INASAISTSCIPTESS Release ZITZIUO (eanier unis week)

Galaxies at z~4, 5, 6, 7.4 (B, V, i, z-dropouts) UV Luminosity Functions

Bouwens, Illingworth et al. 2008

Galaxies at z~4, 5, 6, 7.4 (B, V, i, z-dropouts) UV Luminosity Functions

Bouwens, Illingworth et al. 2008

Colours of the discovered z-dropout population agree with model expectations!

Bouwens, Illingworth et al. 2008

-22Bright Downsizing **Hierarchical** -21**Buildup** M_{1500}^{*} -20M*1 -19AGN Feedback? -186 8 10 Faint () 4 Z

Bouwens, Illingworth, Franx, & Ford 2007

Bright

Fain

Another important question is why we are even using a Schechter parametrization at all. However, UV LFs at z~5 and z~6 seem to have a distinct "knee" and do not resemble power laws

Bouwens, Illingworth, Franx, & Ford 2008

Galaxies at z~10 (J-dropouts)

Dropout Redshift Selection Functions

Galaxies at z~10 (J-dropouts)

Many fields with deep ACS and NICMOS data for dropout searches

Searches for z>6 Galaxies Behind Galaxy Clusters

(see also talks by Richard, Bradac, and Bradley)

- High-redshift galaxies are extremely faint (*L*_{*} ~ 27.5 - 28 *H*_{AB} mag at z ~ 7)
- Use gravitational lensing clusters as cosmic telescopes – cluster "optics" need to be wellconstrained by models
- However, the source plane area is inversely proportionally to the magnification....

Abell 1689

Abell 1703

Abell 2218

MS1358

Searches for z>6 Galaxies Behind Galaxy Clusters

Total Search Fields:

-- 23 arcmin² search area around 11 galaxy clusters

Search for z>=7 z-dropouts:

- -- Use same selection criteria as for field sample
- -- Prefer to use robust selection criteria

Results:

1 robust z-dropout -->

2 other possible z-dropouts (but which do not have deep enough optical data to be sure)

The reason these numbers may be different from Johan Richard is that we only consider $z \ge 7$ candidates we consider reasonably robust (we prefer to keep our selections fairly conservative) and we do not subtract foreground galaxies (perhaps ~20-30% covering area).

Searches for z>6 Galaxies Behind Galaxy Clusters

How efficient are dropout searches in the field vs. behind lensing clusters?

	In the Field	Behind Lensing Clusters
# of z-dropouts	9	1
HST NICMOS Orbits	~1000	~150
Cost	~ 100 orbits	~100 orbits

Similar results are found with z~5 V-dropout and z~6 I-dropout selections

Searches behind lensing clusters do not appear to be much more efficient in practice than in the field. Given the uncertainties In the magnification maps, we are not convinced that the use of lensing clusters is the best way to constrain quantities like the luminosity function.

New Measurements of the UV LFs at z>6: Conclusions

- UDF and GOODS ACS and NICMOS data are superb for z~4 to z~7-10 dropout searches
- Soon >=80 arcmin² of deep (>=26.5 AB mag) near-IR data will be available over areas with deep optical coverage
- Using these data, we have identified 10 z~7-8 z-dropout candidates, with luminosities ranging from 0.1 L*(z=3) to 1.0 L*(z=3)
- The characteristic luminosity of galaxies in the UV appears to brighten substantially (by ~1.2 mag) from z~7.4 to z~3.
- The increase in the characteristic luminosity M* is similar to that expected for the halo mass function -- suggesting that the observed evolution is largely driven by hierarchical build-up.

We find only 1 highly robust z-dropout over > ~20 arcmin² of deep NICMOS data around galaxy lensing clusters